
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_
Hemisphere_transparent_background.png#filelinks

JavaScript and the DOM
and jQuery

Client-Side Web GIS

Now that you have an understanding of the
JavaScript language, we will move on to discuss how
this language can be used to make webpages more
dynamic. In the first section of this module, we will
focus on using JavaScript to manipulate the DOM.
We will then discuss the jQuery library for
JavaScript and explore ways that it can be used to
simplify the implementation of JavaScript for
including interactive features in you web design or
handling DOM events.

1

JavaScript and the DOM

2

2

DOM = Document Object Model

HTML is parsed by the browser
to create the DOM

Attempt to convert the structure
and content of the HTML
document into an object model
represented as a node tree

Browser uses this model to
render the webpage

The DOM

3

First, a review of the DOM.

A web browser (Chrome, Firefox, Edge, Internet
Explorer, Safari, etc.) is able to receive information
from a server (for example, HTML, CSS, and
JavaScript) to render a webpage.

To complete this task, the browser will need to
generate a Document Object Model (DOM) from the
data. I like to think of this as diagramming a
sentence. The HTML is converted into a node tree to
represent the components of the page and their
interrelationships. This model is then rendered to
generate the page.

3

You can think of this as the process of creating a
conceptual model from the code that is used to
render the actual page. If there is an error in the
code, then the DOM may not be generated as
intended, which can result in problems with the
webpage.

3

The W3C Document Object Model (DOM) is a
platform and language-neutral interface that
allows programs and scripts to dynamically
access and update the content, structure, and
style of a document

The HTML DOM is a standard object model and
programming interface for HTML. It defines:
The HTML elements as objects
The properties of all HTML elements
The methods to access all HTML elements
The events for all HTML elements

The HTML DOM is a standard for how to get,
change, add, or delete HTML elements

4

DOM Objects

https://commons.wikimedia.org/wiki/File:DOM-model.svg

Language from:
https://www.w3schools.com/js/js_htmldom.asp

The language on this slide was taken from the
w3schools link provided.

In the example DOM tree provided on this slide, all
elements of the HTML webpage have an associated
node. The DOM diagrams the interrelationships
between the elements. Also, components of a
specific element are referenced separately and can
be accessed separately. For example, a specific <p>
tag can have nodes representing the text that it
holds and any attributes associated with it.

The W3C Document Object Model (DOM) acts as an
interface for JavaScript to dynamically access

4

content on a webpage. It is consistent across
platforms and browsers. It has three components:
core DOM, XML DOM, and HTML DOM.

The HTML DOM specifically acts as the standard
for HTML documents. It is an API for HTML that
defines HTML elements as objects, the properties of
HTML elements, methods to access all HTML
elements, and events for all HTML elements.

In short, the HTML DOM allows JavaScript to get,
change, add, or delete HTML elements defined
within the DOM and used to define the webpage
content.

Please have a look at the W3Schools page linked
here for more information about the HTML DOM.

4

HTML elements defined as JavaScript
Objects

Property = value that you can get or set
(like changing the content of an HTML
element)

Method = action you can do (like add or
deleting an HTML element)

5

Properties and Methods

https://www.w3schools.com/js/js_htmldom_methods.asp

The HTML DOM allows for HTML elements to be
defined as JavaScript objects that have associated
properties and methods.

Properties of an HTML element include content,
such as text stored in a <p> tag, and attributes, such
as the href for an <a> tag.

Methods define actions that can be performed on
the HTML element.

Thinking back to the prior JavaScript module,
remember that a JavaScript object can contain
multiple name:value pairs. In this context, some of

5

these name:value pairs can serve as properties while
others can serve as methods (i.e., functions tied to
the object).

5

6

Finding and Changing Elements

Method Description

document.getElementById() Find an element by its ID

document.getElementsByTagName() Find element(s) by tag name

document.getElementsByClassName() Find element(s) by class name

Find HTML Elements

Method Description Type

element.innerHTML = Change inner HTML Property

element.attribute = Change attribute value Property

element.style.property = Change style Property

element.setAttribute(attribute, value) Change attribute value Method

Change HTML Elements

https://www.w3schools.com/js/js_htmldom_document.asp

The document object represents the entire webpage,
and its methods and properties can be used to find
certain elements on a page and/or manipulate
certain elements on the page.

The first table on this slide provides some methods
for getting HTML elements from the document
object using the element’s ID, tag, or class. Since an
ID can only be assigned to one element, only one
element will be returned. Since multiple elements
can use the same class or tag, multiple elements can
be returned when using classes or tags.

Once an element is found, its content can be

6

changed using the innerHTML property. For
example, this property could be used to change the
text in a <p> tag. There are also properties available
to change attributes, such as the src associated with
an tag, and CSS style properties associated
with an element. The setAttribute() method can also
be used to change an attribute value for an HTML
element.

6

7

Adding and Deleting Elements

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text) Write into the HTML output stream

https://www.w3schools.com/js/js_htmldom_document.asp

Add and Delete Elements

The table on this slide describes how to add or
delete an HTML element on a webpage using the
document object.

7

Events

Mouse Event Keyboard Event Form Events Document/
Window Event

click keypress submit load

dblclick keydown change resize

mouseenter keyup focus scroll

mouseleave blur unload

mouseup

mousedown

hover

https://www.w3schools.com/jquery/jquery_events.asp

8

One key use of JavaScript and the HTML DOM is to
respond to events.

For mouse events, actions can occur on a click,
double-click, mouse enter, or mouse leave. Mouse
enter events occur when the mouse enters the
HTML element to which the event is associated
while mouse leave events are fired when the mouse
leaves the HTML element. Mouse up and mouse
down occur when a specified mouse key is pushed.
Hover combines mouseup and mousedown.

Events can also be defined when specific keyboard
keys are pressed, when a form is altered, or when a

8

document or window is altered in some way.

8

9

Event Listeners

var div1 = document.getElementById("openingDiv");
var btn1 = document.getElementById("btn1");

btn1.addEventListener("click", function () {
if (div1) {

div1.parentNode.removeChild(div1);
}

});

Let’s now step through some examples of using
JavaScript to manipulate a webpage in response to
an event. This requires defining an event listener
that is associated with a specific element. In the
example presented on this slide, a click event is
added to a button assigned the ID “btn1”. When the
event occurs, a function is executed.

9

10

Example 1: Remove a div

var div1 = document.getElementById("openingDiv");
var btn1 = document.getElementById("btn1");

btn1.addEventListener("click", function () {
if (div1) {

div1.parentNode.removeChild(div1);
}

});

Get <div> and
save to variable
using <div>’s ID

Get button and
save to variable
using button’s ID

Add click event
listener to
button

Define what
happens on
event

In this first example, a <div> and all its associated
content are being deleted.

First, the <div> to be removed is assigned to a
variable using the document object’s
getElementById() method and the elements
assigned ID. The button that is being interacted
with is also assigned to a variable using the
getElementById() method and the button’s ID.

An event listener is then assigned to the button to
respond to a click event. The function to execute can
be described as follows: if the <div> exists, remove
it from its parent element.

10

11

Example 2: Toggle between pictures

var image = document.getElementById("img1");
var btn2 = document.getElementById("btn2");

btn2.addEventListener("click", function () {
if (image.src === "URL or PATH") {

image.src = "URL or PATH";
} else {

image.src = "URL or PATH";
}

});

Get image element and save to
variable using image element’s ID

Get button and
save to variable
using button’s
ID

Add click event
listener to
button

Define what happens on
event based on current
state of image src attribute

In this example, the src attribute of an image tag is
toggled with the push of a button.

Similar to the first example, the image and button
are assigned to variables. The event listener is added
to the button. When a click event occurs on the
button, the defined function is executed. The control
flow checks to see which image is currently being
used and changes the src attribute to the other
image.

11

12

Example 3: Change body background color

var btn3 = document.getElementById("btn3");

btn3.addEventListener("click", function () {
document.body.style.backgroundColor = "#ffffff";

});

Get button and
save to variable
using button’s
ID

Add click event
listener to
button

Define what
happens on
event

This example demonstrates changing a specific style
property. Specifically, the background color
property of the <body> tag is changed.

Similar to the prior examples, an event listener is
assigned to a button and a function is executed on a
click event. The background color of the body
element is assigned using the document object’s
properties. More specifically, the document object
contains a body property to access the elements and
associated attributes and content that make up the
page content. The body has a style property which
then has specific styles referenced.

12

13

Example 4: Toggle between stylesheets

var stylesheetLink = document.getElementById("mySheet");
var btn4 = document.getElementById("btn4");

btn4.addEventListener("click", function () {
if (stylesheetLink.href === "URL or PATH") {

stylesheetLink.href = "URL or PATH ";
} else {

stylesheetLink.href = "URL or PATH ";
}

});

Get button and
save to variable
using button’s
ID

Add click event
listener to
button

Define what happens on event
depending on current state of
stylesheet href attribute

Get stylesheet
element using
stylesheet’s ID

This example demonstrates changing the stylesheet
assigned to an entire page. This is accomplished by
changing the href attribute for the <link> tag that
links a stylesheet to the page. Note that the <link>
tag is accessed using the ID assigned to it. Also, the
function uses control flow to determine the current
href before switching to the new href.

Code like this could be used to switch between light
and dark mode on a website.

13

14

Example 5: Add a paragraph

var btn5 = document.getElementById("btn5");
var contentDiv = document.getElementById("finalDiv");

btn5.addEventListener("click", function () {
var newParagraph = document.createElement("p");
newParagraph.textContent = "Added paragraph";
contentDiv.appendChild(newParagraph);

});

Get <div> to
put new
paragraph in
and save to
variable using
<div>’s ID

Get button and
save to variable
using button’s ID

Add click event
listener to
button Define what happens on event: (1) create a new

paragraph, (2) add text content to new paragraph,
(3) add paragraph as child to specified <div>

This example demonstrates adding a paragraph to a
specific <div> with the click of a button. The
appendChild() method for the <div> is used to add
the new paragraph once the new paragraph element
is created and text content is added to it.

14

15

Example 6: Change text color for a span

var span1 = document.getElementById("span1");
var btn6 = document.getElementById("btn6");

btn6.addEventListener("click", function () {
span1.style.color = "#5ba691";

});

Get button and
save to variable
using button’s
ID

Add click event
listener to
button Define what

happens on
event

Get span and
save to variable
using span’s ID

Lastly, this example shows how to change the color
of the text in a tag. This requires accessing
the span’s color style property.

15

16

Video: JS DOM Manipulation

16

jQuery

17

17

What is jQuery?

https://jquery.com/

18

jQuery is a JavaScript library that simplifies the use
of JavaScript in interactive web design.

It allows for manipulation of the DOM,
manipulation of element styling, and incorporation
of effects and animations.

This library is effectively a set of JavaScript class
definitions that can be applied to complete a variety
of common tasks.

It is free and open-source and used by ~73% of the
10 million most popular webpages.

18

Note that additional libraries, frameworks, or
toolkits are available for use with JavaScript (such
as Dojo); however, we will not discuss those here.

18

Download the library

Connect to the CDN
Google
Microsoft

Connecting to jQuery

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.4.1.min.js"></script>

https://jquery.com/ 19

Similar to Bootstrap, jQuery can be used by either
downloading the library and placing it in the folder
directory of your website (for example, in the “src”
folder) or by connecting to a content delivery
network (CDN). Both Google and Microsoft offer
CDNs for jQuery as demonstrated on this slide.

Either way, you will need to link your HTML with
the library using a <script> tag in the <head> of the
document. It is also possible to write jQuery in a
separate .js file as opposed to within the HTML
document.

It is best to use the minimized version of the code to

19

speed up data transfer and the loading of the page.

Note that this slide may not reflect the most recent
version of jQuery.

19

Basic Syntax

$(HTML Element).event(function(){
$(HTML Element).action();

});

HTML Element that is
interacted with Type of event

Element to be
manipulated

How to
manipulate
element

20

This slide describes the basic structure of jQuery
syntax.

First, $ is used to define or access jQuery. The first
referenced HTML element is the element that is
interacted with while the event defines the type of
interaction. Within an anonymous function, an
element is defined that will be manipulated followed
by the action or manipulation to perform.

For example, a button when clicked could be used to
change the style of a <div>. Alternatively, a button
when clicked could add a new paragraph to a page.

20

Waiting for Doc to Load

$(document).ready(function(){
$(".my_btn").click(function(){

$(".my_btn").css({"background-color": "gray"});
});

});

21

Generally, we would not like jQuery to be executed
until the page loads fully. To force this, it is
recommended to wrap all jQuery syntax in a
document ready event.

There are lots of parentheses and brackets in this
statement. That is because we have a function
embedded within another function. Again, when
working with JavaScript and jQuery, you will need
to get used to embedding functions within functions
or using multiple objects, which can result in a lot of
curly brackets.

21

CSS Selectors with jQuery

$(document).ready(function(){
$(".my_btn").click(function(){

$(".diva").toggleClass('divb');
});

Reference to CSS
selector

Reference to CSS
selector

22

How do you define which HTML elements to
interact with and which element on which to
perform an action?

This is generally accomplished by referencing the
CSS selector applied to the element of interest.

For example, you can make references using
element selectors, class selectors, and/or ID
selectors.

In the provided example, the event (in this case a
click) is referenced to a button with the “my_btn”
class. When clicked, it performs the action of

22

changing or toggling the CSS for a <div> assigned to
the “diva” class.

So, the use of jQuery requires that you use CSS
classes. Note that all HTML elements assigned to
the referenced ID or class will be impacted. So, if
you only want to have one element impacted, it
would be best to use an ID selector or only apply the
referenced class selector to a single object.

Note that you can also use pseudo selectors and
combination selectors in jQuery.

22

Events

Mouse Event Keyboard Event Form Events Document/
Window Event

click keypress submit load

dblclick keydown change resize

mouseenter keyup focus scroll

mouseleave blur unload

mouseup

mousedown

hover

https://www.w3schools.com/jquery/jquery_events.asp

23

jQuery can be used to perform an action in response
to a wide variety of events. The action will be
performed when the event is fired.

For mouse events, actions can occur on a click,
double-click, mouse enter, or mouse leave. Mouse
enter events occur when the mouse enters the
HTML element to which the event is associated
while mouse leave events are fired when the mouse
leaves the HTML element. Mouse up and mouse
down occur when a specified mouse key is pushed.
Hover combines mouseup and mousedown.

Events can also be defined when specific keyboard

23

keys are pressed, when a form is altered, or when a
document or window is altered in some way.

The on() method can be used to assign multiple
actions to a single event.

We will focus on the use of events to generate
effects, change element style, or change the DOM.
In later modules, you will see examples applied to
web mapping.

23

hide()/show()/toggle() = Hide or show an element on the page in response to
an event or toggle between hiding and showing an event

fadeIn()/fadeout()/fadeToggle()/fadeTo() = Fade an element in or out, toggle
between fade in and fade out, and fade to defined opacity

slideDown()/slideUp/slideToggle() = slide an element up or down or toggle
between sliding up and town

animate() = define a custom animation

stop() = stop an animation or effect before it finishes

Callback Functions = define an action to occur after the current effect is
finished.

Types of Effects

24

This slide describes some common effects that can
be applied to HTML elements using jQuery
including showing and hiding features, fading
features in and out, sliding features up or down, or
defining a custom animation.

Note that the methods ending in toggle generally
combine both actions (hide/show, fade-in/fade-out,
slide up/slide down).

The stop() method can be used to stop() an action
before it completely executes. It is also possible to
define a callback function to execute another action
once the current action finishes.

24

With many effects it is possible to define how fast
they occur.

24

Hide/Show

<body>

<h2>Show/Hide Example</h2>

<button class="btn btn-primary my_btn">Hide Div</button>

<div class="diva">

<p>Some text.</p>
<p>Some more text.</p>

</div>

<div class="divb">

<p>Some text.</p>
<p>Some more text.</p>

</div>

</body>

<script>
$(document).ready(function(){
$(".my_btn").click(function(){

$(".diva").toggle(1000);
});

});

</script>

25

This example demonstrates the hide and show
action.

Using jQuery, a click event is associated with a
button. This event applies a hide/show toggle to a
<div> with the class “diva”. All elements within the
<div> will also be impacted.

The “1000” argument in toggle() indicates that the
hide or show should take 1,000 millisecond to
execute.

Have a look at the provided example and make sure
you understand how this effect is implemented.

25

Hide/Show

<script>
$(document).ready(function(){
$(document).on('keypress', function(e) {

if (e.originalEvent.key=="s") {
$(".diva").show();

} else if (e.originalEvent.key== "h") {
$(".diva").hide();

};
});

});
</script>

26

This example describes a method to show or hide an
element when certain keys are pressed.

In this example, the event is a key press anywhere
on the page. If the key is “s” then the <div> assigned
to class “diva” is shown. If the key pressed is “h”
then that <div> will be hidden. No other action will
be executed if any other key is pressed (at least not
by this event). The argument e defined in the
function represents an event. The event object
contains another object called “originalEvent” that
is used to determine what key is pressed and thus
what action to execute.

26

on() Method

<script>
$(document).ready(function(){
$(".my_btn").on({

click: function(){
$(".diva").slideToggle("slow");

},
contextmenu: function(){
$(".diva").fadeToggle("fast");
}

});
});

</script>

27

In this example I am using the on() method to
execute different actions for two different events
relative to the button assigned to the “my_btn”
class.

If the button is clicked, this will cause the <div>
assigned to the “diva” class to slide in or out slowly.
However, if the event is a right-click over the
button, then the <div> will fade in or out quickly.
Note that “contextmenu” indicates a right-click
since this will generally load the context menu. A
right-click is not generally used in the manner
demonstrated here. This is just an example.

27

Note that the on() method accepts a JavaScript
object that contains a series of properties that define
methods to apply.

27

Callbacks

<script>
$(document).ready(function(){

$(".my_btn").click(function(){
$(".diva").toggle("slow", function(){

alert("Div 1 Has been Toggled")
});

});
});

</script>

28

Most effects will accept a second argument which
defines what to do after the effect is finished. This
will generally be defined with a function that
specifies a second action.

In this example, after the <div> assigned to the
“diva” class is toggled to show or hide it, an alert is
produced.

28

Chaining

<script>
$(document).ready(function(){

$(".my_btn").click(function(){
$(".diva").css("background-color", "red")

.css("color", "white")

.css("font-size", "24pt");
});

});
</script>

29

It is also possible to chain together actions to
execute them all with one event, such as one mouse
click.

In this example, I have changed three style features
for the <div> assigned to the “diva” class. Note that
this could be done with just one application of the
css() method by making multiple changes within
this single call. This is just an example.

29

jQuery can be used to manipulate the DOM

Get methods will return element content from the DOM

Set methods will set or change content from the DOM

text() = set or return text content of selected element

html() = set or return content and HTML markup

val() = set or return values of form fields

attr() = set or return attribute values

Get and Set

30

Get and set methods are used to manipulate the
DOM, which is a common use of jQuery.

For example, you could use this to change the text in
a <p> tag or the image within an tag.

Get methods are used to return values while set
methods can set or change them.

As described on this slide, different methods are
available for interacting with text, values, and
element attributes. The html() method is similar to
text() but will set or return both the text and the
HTML markup.

30

We will not work with form data in this course, so
will not use val().

30

Set

<script>
$(document).ready(function(){
$(".my_btn").click(function(){

$('.p1').html("<i>The text is
changed.</i>")

});
});

</script>

<body>

<h2>Show/Hide Example</h2>

<button class="btn btn-primary my_btn">Click Here</button>

<div class="diva">
<p class="p1">Some text.</p>
<p>Some more text.</p>
</div>

<div class="divb">
<p class="p1">Some text.</p>
<p>Some more text.</p>
</div>

</body>

31

In this example, I am using the html() set method to
change the text in all <p> tags assigned to the “p1”
class.

In the body, the first paragraph in each <div> is
assigned to this class, so the text change will be
applied to both paragraphs but no other paragraphs
on the page.

Since I used the html() method as opposed to the
text() method, I can include HTML markup to
italicize the text.

31

Add methods can add new content to the DOM

Remove methods can remove or delete content from the DOM

Add and Remove

Add
Methods

Description
Remove
Methods

Description

append()
Insert content at the end
of selected element

remove()
Remove selection
element and its children

prepend()
Insert content at the
beginning of selected
element

empty()
Remove child elements
from selected elements

after()
Insert content at the end
of selected element

before()
Insert content before the
selected element

32

It is also possible to add or remove content from the
DOM.

Content can be added to an existing HTML element
using append() or prepend(). New HTML elements
and associated content can be added using after()
and before().

When using append() or prepend(), you will need to
provide a selector for the element to which you want
to add content. When using after() or before(), you
must provide a selector for the element that the new
content will be added before or after.

32

To remove content, the remove() method can be
applied to remove the HTML element and its
children while empty() will remove the content but
maintain the empty element.

32

Add

<script>
$(document).ready(function(){

$('.my_btn').click(function(){
$('.p1').after("<p>Added text.<p>");

});
});

</script>

33

In this example, I am using the .after() method to
add a new paragraph after any paragraph assigned
to the “p1” class.

Note that new content can be defined using HTML,
jQuery, or the DOM. In this example, I am using
HTML.

33

Remove

<script>
$(document).ready(function(){

$('.my_btn').click(function(){
$('.diva').remove();
$('.divb').empty();

});
});

</script>

34

In this example, the <div> assigned to the “diva”
class is removed while the <div> assigned to the
“divb” class is maintained, but its contents are
emptied.

34

CSS Manipulation

Methods Description

addClass() Add one or more classes to the selected elements

removeClass()
Removes one or more classes from the selected
elements

toggleClass()
Toggles between adding/removing classes from the
selected elements

css() Sets or returns the style attribute

35

Another very common use of jQuery is to
manipulate element styling as defined by CSS.

The addClass() method can be used to add one or
more classes to the selected elements while
removeClass() can be used to remove one or more
classes.

The toggleClass() method allows for toggling
between adding and removing classes from selected
elements.

If you would like to change just a subset of the
styles, you can use the css() method and provide the

35

properties you want to change and the associated
values.

Note that CSS classes must be defined prior to using
them in the jQuery syntax.

35

css() Method

<script>
$(document).ready(function(){

$('.my_btn').click(function(){
$('.diva').css("background-color", "DarkKhaki");
$('.divb').css({"background-color":"white",

"color":"black", "font-size":"32pt"});
});

});
</script>

36

In this example, I am using the css() method to
change styling applied to the <div> assigned to the
“diva” class and the “divb” class separately.

I am only making one change to the <div> assigned
to the “diva” class: change the background color.
However, I am making multiple changes to the
element assigned to the “divb” class. Note that the
format for providing a single change is different
from that for providing multiple changes.

36

toggleClass() Method

<script>
$(document).ready(function(){

$(".my_btn").click(function(){
$(".diva").toggleClass('divb');

});
});

</script>

37

In this example, I am using the toggleCSS() class to
toggle between two defined classes. If an object is
assigned to the “diva” class, it is toggled to “divb”. If
it is assigned to “divb”, it is toggled to the “diva”
styling. This action is performed when a click event
on the button assigned to the “my_btn” class is
fired.

37

Resources

https://www.w3schools.com/jquery/default.asp 38

This module provided just an introduction to
jQuery. There are many additional tasks that can be
performed. Different tasks will use syntax similar to
the examples provided here.

With the provided examples, you should be able to
apply effects, manipulate the DOM, and change
element styling. We did not discuss methods for
working with dimensions, AJAX, and forms.

You will see more jQuery examples in the last set of
modules where we apply JavaScript to produce
interactive web maps.

38

The w3schools.com link provided on this page is a
great resource for learning additional jQuery syntax
and use cases.

38

39

Video: jQuery

39

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Thanks! Hope you found this useful.

40

