
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_H
emisphere_transparent_background.png#filelinks

Leaflet JavaScript API

Client-Side Web GIS

Expanding upon the last section, we will now
investigate the Leaflet JavaScript API as a free and
open-source alternative to the ArcGIS API for
JavaScript.

1

Background

2

2

Web mapping JavaScript API

Free and open-source

Used by a variety of organizations:
NPR
Data.gov
Facebook
Pinterest, Etsy, Flickr
USA Today, The Washington

Post
European Commission
Open Street Map
US Forest Service

What is Leaflet?

https://leafletjs.com/

3

Leaflet is a free and open-source web mapping
JavaScript API.

Similar to the ArcGIS Maps SDK for JavaScript,
maps are generated using JavaScript. Although
there are some similarities, the code used to
generate maps with Leaflet is different from the
code implemented via the ArcGIS Maps SDK.

As noted on this slide, Leaflet is used by a variety of
organizations and companies.

3

Download Leaflet JavaScript and CSS libraries and store in your
website directory (in “src” folder and “css” folder)

Link to Content Delivery Network (CDN)

You do not need an API key to use Leaflet

Preparing to use Leaflet

<link rel="stylesheet" href=“css/leaflet.css">

<script src="src/leaflet-src.js"></script>

4

Similar to other APIs, libraries, frameworks, or
toolkits, to use Leaflet you can either download the
JavaScript and CSS code from the Leaflet webpage
and store it within your website directory or you can
link to the associated content delivery networks
(CDNs).

For Leaflet, I generally prefer to host the source
code along with my website, as the files are not very
large.

Since Leaflet is free and open-source, you do not
need to acquire an API key to use it.

4

Blueprint for objects of the same type

Use constructor method to create a new object of this class

Pre-defined methods, properties, and options to work with for:
Creation
Interaction
Events
Get, set, and change settings and options

JavaScript Classes

5

When using Leaflet, you will work with a variety of
pre-defined classes that have associated methods to
handle creation, interaction, events, and setting and
changing options.

Here, I will discuss the most used classes and
provide some examples.

5

Documentation
available with API

Some examples used
here came from the API
documentation

Documentation

https://leafletjs.com/reference-1.6.0.html 6

Leaflet is very well documented. This slide provides
a link to the API reference page. Many of the
examples used here were taken from the API page.

If you use leaflet on a regular basis, you will get
familiar with this documentation and learn to use it
effectively.

6

Document Ready

$(document).ready
(function(){

});

7

You may not want functions to be executed until the
webpage is fully loaded. So, it is common to place
JavaScript code that is used to generate map
content and handle events within a function within
a document ready event, defined in the example
with jQuery.

This will be demonstrated in the provided examples.

7

Map Class

8

8

L.map()

Generate a Map

map = L.map('formap', {center:[37.1, -95.7],
zoom:4});

9

The map class allows for the generation of a web
map that can be stored in a <div> on a webpage.

Maps are generated using the L.map() constructor
method. The first argument (‘formap’ in this
example) is the ID selector for the <div> in which
you want to produce the map on the page.

You can also provide a variety of options. In this
example, I am setting the map center as an array
that contains a latitude and longitude coordinate
pair and the map zoom level. Note that Leaflet
expects the latitude to be provided followed by the
longitude. Zoom levels in Leaflet are the same as

9

those in Google Maps and the ArcGIS Maps SDK for
JavaScript.

Options are provided using JavaScript object
notation (note the curly brackets).

9

AttributionControl = used to provide attribution/citation for basemaps
and data layers (this is a legal obligation for using some data)

zoomControl = add a default zoom controller to the map (will be added
by default)

Controls

L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
attribution: '© <a href="https://www.openstreetmap.org
/copyright">OpenStreetMap contributors'

10

Maps have controls that are added by default but
can be turned off. For example, the
AttributionControl will add attribution for specific
layers. For some layers, such as base maps and
raster tile layers, attribution is a legal obligation.
Many layers will include default attribution, but you
can provide your own attribution for layers. The
slide provides an example attribution for the
OpenStreetMaps base map.

The zoom control is added by default and provides
buttons to zoom in and out.

10

center = set center of map view

zoom = set map zoom level

minZoom = set minimum allowed zoom level

maxZoom = set maximum allowed zoom level

Layers = Add layers to the map

maxBounds = set maximum bonds allowed

dragging = define whether or not the map can be panned or dragged

Map State and Interaction

11

This slide lists some common options used to define
map interaction or change the map state in some
way.

Center is used to define the map center coordinates
while zoom sets the zoom level. The minZoom and
maxZoom options can be used to limit the allowed
zoom levels or how much the user can zoom in or
zoom out.

The layers option can be used to add layers to a map
and accepts an array of variables representing
layers.

11

The maxBounds and dragging arguments are used
to limit or hinder panning in the map space.

11

addControl() = add control to map

removeControl() = remove control from map

addLayer() = add layer to map

removeLayer() = remove layer from map

setView() = set view using lat/long and zoom level

setZoom() = set just zoom

fitBounds() = fit map to bounds (generally relative to a data layer)

Map Methods

12

This slide lists a variety of methods for altering the
map.

The addControl() method allows the user to add
controls to the map. I will provide specific examples
throughout this module. In contrast,
removeControl() will remove the control.

The addLayer() and removeLayer() methods are
used to add and remove layers from the map.

setView() is used to set or change the map center
and zoom level while setZoom() just changes the
zoom level. The fitBounds() method can be used to

12

fit the map extent to the bounds of a specific layer.

Note that most set methods have associated get
methods to retrieve the current settings. This can be
useful for event handling.

12

Setting Center and Zoom

mymap = L.map('formap', {center:
[37.1, -95.7], zoom: 4});

13

This slide provides an example of setting the map
center and zoom level using the associated options.

The map center is defined as an array that contains
the latitude and longitude while the zoom is
specified with a number that represents a zoom
level.

13

Set a minimum zoom level with minZoom option

Set a maximum zoom level with maxZoom option

Limit panning using maxBounds option

Not allow dragging or panning using dragging option

Limiting Pan and Zoom

14

Again, you can limit the user’s ability to pan and/or
zoom using a variety of options.

14

Represent geographic points

Provide latitude and longitude as an array or as an
object

Provide latitude before longitude when providing an
array

Working with LatLng

var latlng1 = L.latLng(50.5, 30.5);

15

Another common class in Leaflet is the LatLng class
that is used to represent geographic coordinates.
Again, Leaflet expects the latitude to be provided
before the longitude.

15

Defines a rectangular extent

Can be used to set map extent

Working with LatLngBounds

var corner1 = L.latLng(40.712, -74.227),
corner2 = L.latLng(40.774, -74.125),
bounds = L.latLngBounds(corner1, corner2);

map.fitBounds([
[40.712, -74.227],
[40.774, -74.125]

]);

16

You can also use the LatLngBounds class to specify
a rectangular extent by providing latitude and
longitude coordinates that represent opposite
corners of a rectangle.

The fitBounds() method can then be used to fit the
map to the defined bounds.

16

Working with Layers

17

17

User Interface Layers
Marker
Popup
Tooltip

Raster Layers
Tile Layer
TileLayer.WMS
ImageOverlay
VideoOverlay

Vector Layers
Path
Polyline
Polygon
Rectangle
Circle
CircleMarker
SVGOverlay
SVG
Canvas

Other Layers
LayerGroup
FeatureGroup
GeoJSON
GridLayer

Layer Types

18

Classes have been defined to generate a variety of
layers. We will not cover all of these classes here,
but the API documentation provides a discussion of
each if you are interested.

18

The relative horizontal position of layers or and layer groups
is defined by assigning a zIndex

You can also generate our own panes to store layers and
content and define your own zIndex for each pane

Panes and zIndex

Pane Type Z-index Description

mapPane HTMLElement 'auto' Pane that contains all other map panes

tilePane HTMLElement 200 Pane for GridLayers and TileLayers

overlayPane HTMLElement 400
Pane for vectors (Paths, like Polylines
and Polygons), ImageOverlays and VideoOverlays

shadowPane HTMLElement 500 Pane for overlay shadows (e.g. Marker shadows)

markerPane HTMLElement 600 Pane for Icons of Markers

tooltipPane HTMLElement 650 Pane for Tooltips.

popupPane HTMLElement 700 Pane for Popups.
19

The relative horizontal position, layering, or
stacking of map features, layers, and groups is
determined by the zIndex. The table provided on
this slide is from the API documentation and lists
the default zIndex for different types of layers.

Higher numbers indicate that layers will draw above
layers with smaller numbers. For example, by
default pop-ups will draw above polygons and
polylines.

You can also define your own zIndex for layers by
creating your own panes. I generally prefer this
method if I have a lot of layers and want to have

19

more control over the drawing order, but this is just
personal preference.

19

Panes and zIndex

hpmap.createPane('pA');
hpmap.createPane('pB');
hpmap.createPane('pC');
hpmap.createPane('pD');
hpmap.createPane('pE');

hpmap.getPane('pA').style.zIndex = 210;
hpmap.getPane('pB').style.zIndex = 410;
hpmap.getPane('pC').style.zIndex = 420;
hpmap.getPane('pD').style.zIndex = 430;
hpmap.getPane('pE').style.zIndex = 440;

20

This slide demonstrates how to create new panes
and define a zIndex for each pane. Once panes are
generated, layers can be assigned to them using the
pane option.

20

Show geographic point as an icon

L.marker()

Options
Icon
Opacity
riseOnHover
Pane
Attribution

Marker

L.marker([50.5, 30.5]).addTo(map);

21

Markers are user interface (UI) layers that are used
to display clickable and draggable icons on the map.
By default, the blue tear drop symbol is used.
However, you can specify custom icons to use.

Markers have a variety of options. For example, you
can choose an icon, set an opacity, allow the marker
to be raised when it is hovered over, assign it to a
pane, and provide attribution.

This slide provides an example of adding a marker
using the L.marker() constructor method and by
providing a coordinate pair to locate the marker. It
is then added to the map using the addTo() method.

21

getLatLng/setLatLng() = get or set the
coordinate of the marker

getIcon()/setIcon() = get or set the icon used
to represent the location

setOpacity() = change the opacity of the icon

toGeoJSON() = convert the icon to GeoJSON

Marker Methods

22

Here are some common methods used to work with
markers.

The coordinates for the marker can be printed or set
using getLatLng() or setLatLng() while the icon
used can be printed or set using getIcon() or
setIcon(). The opacity can be set with setOpacity().

Markers can be converted to GeoJSON using the
toGeoJSON() method.

22

Set location

Define icon to use
(default to blue
tear drop icon)

Can use custom
icons or icons
from libraries

Add and Style Marker

var myIcon = L.icon({
iconUrl: 'my-icon.png',
iconSize: [38, 95],
iconAnchor: [22, 94],
popupAnchor: [-3, -76],
shadowUrl: 'my-icon-shadow.png',
shadowSize: [68, 95],
shadowAnchor: [22, 94]

});
L.marker([50.505, 30.57], {icon: myIcon}) .addTo(map);

23

This slide provides an example of how to define and
style a marker.

A marker icon can be referenced from a URL or via
a file stored within your website directory. You can
also manipulate the size and position of the icon and
the size and position of the icon shadow.

When the marker is generated, the icon can be
referenced using a variable.

23

TileLayer = represent raster tile layer data

TileLayer.WMS = display raster tile layers from a Web Map
Service (WMS)

ImageOverlay = load and display a single image on the map
over a given bounds

VideoOverlay = extends ImageOverlay to allow for video data
to be added to map over a given bounds (such as a time series
animation)

Raster Layers

24

Raster tile layers can be added to leaflet maps using
the L.tileLayer() constructor method. If the tiles are
provided by a web map service (WMS) specifically,
then you can use L.TileLayer.WMS().

These are common methods for adding base maps
or operational layers that have been cached to raster
tiles. Note that you will not be able to change the
symbology of raster tile layers since you are loading
in pre-rendered tiles.

L.ImageOverlay() and L.VideoOverlay() can be used
to add a single image or video file to a map that is
referenced to a specified geographic bounds. Video

24

overlays can be used to include video animations,
such as a time series video.

Note that image and video overlays can only
reference a single file. They are not meant to
reference raster tile layers that include multiple files
and change with the extent and zoom level.

24

L.tileLayer()

Options
minZoom
maxZoom
opacity
 zIndex
bounds
pane
className

Add Raster Tile Layer

'http://{s}.somedomain.com/blabla/{z}/{x}/{y}{r}.png'

25

There are some options available for raster tile
layers. You can set the maximum and minimum
zoom levels at which the tiles will be visible. You can
also set an opacity, zIndex, and pane in which to
draw the tiles.

The bounds option can be used to limit the
geographic bounds in which the tiles are drawn.

The “className” option is used to associate the tiles
to a CSS class.

This slide provides an example nomenclature for
linking to raster tile layers. {s} indicates

25

subdomains to help the browser with parallel
requests per domain limitations. {z} indicates the
zoom level being requested, {x} and {y} indicate the
tile coordinates. {r} is used for loading tiles
appropriate for high resolution retina display.

Raster tiles can be provided in several different
compressed raster formats. PNG and JPEG are most
common.

25

Base maps are generally added as raster tile layers

Add Base Maps

L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png?{foo}', {foo:
'bar', attribution: 'Map data © OpenStreetMap contributors,
CC-BY-
SA'}).addTo(map);

26

This slide provides examples of adding base maps
by referencing raster tile layers. Specifically, I am
linking to OpenStreetMap (OSM) tiles.

Note that OSM data are open-source and free;
however, you still need to provide attribution.

26

Leaflet-providers plugin offers an easy means to add a
variety of different base maps

Add Base Maps (leaflet-providers)

lyrOSM = L.tileLayer.provider('OpenStreetMap.Mapnik');
lyrTer = L.tileLayer.provider('OpenTopoMap');
lyrNL = L.tileLayer.provider('NASAGIBS.ViirsEarthAtNight2012');
lyrDrk = L.tileLayer.provider('CartoDB.DarkMatter');
hpmap.addLayer(lyrOSM);

var hpmap;
var lyrOSM;
var lyrTer;
var lyrNL;
var lyrDrk;

https://leaflet-extras.github.io/leaflet-providers/preview/ 27

Instead of using the default method for adding
raster tile layers and base maps, I prefer to use the
leaflet-providers plugin. I find that the syntax is
simpler, and you have easy access to a variety of
base maps.

When connecting to multiple base maps, you should
only add one to the map initially. You can then use
layer controls to switch between base maps, which
will be discussed later in the module.

The link provided on this page offers previews for a
variety of base maps.

27

Note that some base maps will require an API key
for use or may limit the number of downloads
available within a certain time period. So, they all
may not be free for unlimited use. However, some
are, such as OSM base maps.

27

L.circle()

Options
Radius (radius defined in meters so symbol does not change size with

map scale)
Stroke, color, weight, opacity, lineCap, lineJoin, dashArray,

dashOffset, fill, fillColor, fillOpacity, renderer, className, pane,
attribution

Circle

28

Point data can be added to maps as a circle using
the L.circle() constructor method. When using this
method, the radius option will define the radius of
the circle in meters, so the circle size will not adjust
when the user zooms in or out.

As noted on this slide, a variety of styling options
are available for circles.

Note that circles, circleMarkers, Polylines, and
Polygons all reference the Path abstract class that
defines some common behaviors and styles. They all
also reference the Layer class.

28

L.circleMarker

Options
Radius (with radius defined in pixels so symbol does change with map

scale)
Stroke, color, weight, opacity, lineCap, lineJoin, dashArray,

dashOffset, fill, fillColor, fillOpacity, renderer, className, pane,
attribution

CircleMarker

29

A circleMarker is similar to a circle accept that the
radius is defined as a number of screen pixels as
opposed to using map units, so the symbol will
resize as the map scale changes.

A variety of options are available, similar to those
for circles. CircleMarkers also reference or extend
the Path and Layer classes.

29

Add and Style CircleMarker

var cMrk1 = L.circleMarker(latlng, {radius:10,
weight: 1, color: '#111111',
fillColor:"#eeeeee", fillOpacity:0.9,
pane:'pD'});

30

This slide describes how to generate a circleMarker.
Note that you must provide the latitude and
longitude coordinates and can provide a variety of
style options. I am also specifying a pane to add the
circleMarker to.

The radius here would be in pixels as opposed to
meters since we are using circleMarker as opposed
to circle.

Once this circleMarker is generated, it can be added
to the map using the addTo() method.

30

L.polyline()

Accepts array of arrays of latitude and
longitude coordinates

Can use a multidimensional array to
represent MutliPolyline shape

Options: stroke, color, weight,
opacity, lineCap, lineJoin, dashArray,
dashOffset, fill, fillColor, fillOpacity,
fillRule, renderer, className

Polyline

var latlngs = [
[[45.51, -122.68],
[37.77, -122.43],
[34.04, -118.2]],
[[40.78, -73.91],
[41.83, -87.62],
[32.76, -96.72]]

];

var polyline = L.polyline(latlngs, {color: ‘blue'}).addTo(map);
31

Polylines are used to represent linear features. The
linear feature must be represented by a series of
latitude and longitude coordinates using an array of
arrays. MultiPolyline features, or a single feature
made up of multiple lines, can be generated using a
multidimensional array.

A variety of styling options are available.

Polyline extends the Path and Layer classes.

31

L.polygon()

Accepts array of arrays of latitude and longitude coordinates

First and last should not be the same coordinate

Can use multidimensional arrays to represent MultiPolygon shape

Can include holes

Polygons

var latlngs = [
[[37, -109.05],[41, -109.03],[41, -102.05],[37, -102.04]], // outer ring
[[37.29, -108.58],[40.71, -108.58],[40.71, -102.50],[37.29, -102.50]] // hole

];

32

Polygons extend the Polyline class, and also the
Path and Layers classes.

Similar to Polyline, Polygons are defined using an
array of arrays, and MultiPolygons, where a single
feature is made up of multiple separated polygons,
can be defined using a multidimensional array. Note
that it is also possible to define holes along with an
outer ring.

In contrast to GeoJSON, the first coordinate should
not be repeated as the last coordinate in the array.
The last coordinate will automatically connect back
to the first.

32

Options: stroke, color,
weight, opacity, lineCap,
lineJoin, dashArray,
dashOffset, fill, fillColor,
fillOpacity, fillRule, renderer,
className

Polygon Styling

var latlngs = [[37, -109.05],[41, -109.03],[41, -102.05],[37, -102.04]];
var polygon = L.polygon(latlngs, {color: 'red'}).addTo(map);

33

Similar to circle, circleMarker, and Polyline, a
variety of styling options are available for the
Polygon class.

The styling options will be provided using
JavaScript object notation (note the curly brackets).

The Polygon can then be added to the map using the
addTo() method.

33

Group layers to handle
as a single layer

L.layerGroup()

LayerGroup

L.layerGroup([marker1, marker2])
.addLayer(polyline)
.addTo(map);

34

It is possible to merge multiple layers into a single
group using the LayerGroup class.

This can be useful if you want to work with layers
collectively.

34

Extends layer group

Makes it easier to
do the same thing to
all members of the
group

FeatureGroup

L.featureGroup([marker1, marker2, polyline])
.bindPopup('Hello world!')
.on('click', function() { alert('Clicked on a

member of the group!'); })
.addTo(map);

35

FeatureGroup extends FeatureLayer and makes it
easier to do the same thing to multiple layers at
once, such as add a pop-up to each layer in the
group.

Both FeatureGroup and LayerGroup extend the
Layer class.

35

Link to GeoJSON via a URL or stored within your website directory (for
example, in “data” folder)

Rendered using similar methods as those for makers, circleMarkers,
circles, polylines, and polygons

Extends featureGroup

Use a function to define how GeoJSON spawns leaflet layers

GeoJSON

36

Since JavaScript can directly read data stored in
GeoJSON format, which is open-source and non-
proprietary, this is a common format used in
Leaflet. You can access GeoJSON files using a URL
or by storing them in your website directory (for
example, in the “data” folder). I generally use QGIS
to convert files to GeoJSON for use in web mapping.

The GeoJSON Leaflet class extends the
FeatureGroup class. So, GeoJSON features are read
in and stored in a group. Remember that GeoJSON
can store points, lines, and polygons in the same
file, so the featureGroup can also contain these
different geometries.

36

In order to symbolize the GeoJSON data in Leaflet,
it is common to use a function to define how layers
are spawned and what symbology is used.

36

L.geoJSON() or $.getJSON()

L.geoJson.ajax() (from leaflet-ajax plugin)
Call JSON using AJAX or JSONP

Reading in GeoJSON

lyrpfor = L.geoJSON.ajax('data/per_for_wgs84.geojson',
{style:stylePfor, onEachFeature:popPfor})

lyrcities = L.geoJSON.ajax('data/cities_wgs84.geojson',
{pointToLayer:returnCtyStyle).addTo(hpmap);

37

Leaflet provides the L.geoJSON() constructor
method. You can also use $.getJSON() if you are
storing the data locally.

You can use the “onEachFeature” option to specify
actions to be performed when reading in each
features, such as binding a pop-up. The style
argument can be referenced to a function that
generates different symbology as defined with if else
conditional statements or a switch.

For point data, the “pointToLayer” option is used to
specify how markers, circles, or circleMarkers are
spawned from the GeoJSON data.

37

Another option for reading in GeoJSON is using the
L.geoJSON.ajax() method form the leaflet-ajax
plugin. This allows for AJAX to be applied to
transfer the data. I prefer to use this method.

37

Similar to Leaflet layers

Can use a function

Styling GeoJSON

lyrstates = L.geoJSON.ajax('data/states_wgs84.geojson',
{style:{fillColor:'#ffffff', color:"red", fillOpacity:0,
opacity:1, weight:1.5, pane:'pB'}}).addTo(hpmap);

38

If you want to apply the same style to all the
features read in from the GeoJSON file, you can
specify the styling options using JavaScript object
notation as demonstrated here.

38

Similar to Leaflet layers

Can use a function

Styling GeoJSON

function stylePfor(json){
var att = json.properties;
if (att.wester_158 <= 2) {

var clrPfor = '#edf8fb';
} else if (att.wester_158 > 2 && att.wester_158 <= 5){

var clrPfor = '#b2e2e2';
} else if (att.wester_158 > 5 && att.wester_158 <= 10){

var clrPfor = '#66c2a4';
} else if (att.wester_158 > 10 && att.wester_158 <= 15){

var clrPfor = '#2ca25f';
} else {

var clrPfor = '#006d2c';
}
return {fillColor: clrPfor, opacity:1, color:"#222222",
fillOpacity:.9, weight:1, pane:'pC'}

}

39

If you want to apply different styling based on an
attribute to represent different categories or ranges
of values, this can be accomplished using a function
and control flow.

Here, I am using an attribute provided with the data
layer to assign different colors to different ranges of
values. The symbology is then returned by the
function.

This function will then need to be called using the
“style” option or “pointToLayer” option.

39

Styling GeoJSON

function returnCtyStyle(json, latlng){
var att = json.properties;
switch (att.POP_CLASS) {

case 5:
var optCty = {radius:2, weight: 1, color: '#111111', fillColor:"#eeeeee", fillOpacity:0.9, pane:'pD'};
break;

case 6:
var optCty = {radius:4, weight: 1, color: '#111111', fillColor:"#eeeeee", fillOpacity:0.9, pane:'pD'};
break;

case 7:
var optCty = {radius:6, weight: 1, color: '#111111', fillColor:"#eeeeee", fillOpacity:0.9, pane:'pD'};
break;

case 8:
var optCty = {radius:8, weight: 1, color: '#111111', fillColor:"#eeeeee", fillOpacity:0.9, pane:'pD'};
break;

case 9:
var cMrk1 = L.circleMarker(latlng, {radius:10, weight: 1, color: '#111111', fillColor:"#eeeeee", fillOpacity:0.9, pane:'pD'};
break;

}
var popupOptions = {maxWidth: 200, pane:'pE', className: 'popC'};
return L.circleMarker(latlng, optCty);

} 40

As an alternative to control flow, you can also use a
switch to define styling to be applied to different
cases.

40

ESRI Leaflet plugin allows you to use ESRI data layers in Leaflet

Can connect to layers made available through a data service, stored
locally with your webpage, or hosted on ArcGIS Online

Can connect to: ESRI Basemaps, ESRI Vector Basemaps, feature layers,
hosted feature layers, raster tile layers, dynamic raster tile layers, map
layers, and image map layers

Allow for generation of symbology and pop-ups

Working with ESRI Data Layers

http://esri.github.io/esri-leaflet/ 41

You can also use ESRI data layers in Leaflet with the
esri-leaflet extension, including ESRI basemaps,
ESRI vector basemaps, feature layers, hosted
feature layers, raster tile layers, map layers, and
image map layers. This plugin also allows for
defining custom symbology and pop-ups.

You can link to data stored on ArcGIS-based data
services, data stored locally in your website
directory, or ArcGIS Online content. Data access
may require licensing and fees.

41

Working with ESRI Data Layers

http://esri.github.io/esri-leaflet/

layer = L.esri.basemapLayer('Topographic').addTo(wvmap);
naip = L.esri.tiledMapLayer({url: ‘#‘}).addTo(wvmap);
inter = L.esri.featureLayer({url: ‘#’, style:{color: "orange", weight:
3}}).addTo(wvmap);

42

Here are some examples of reading in a basemap,
raster tile layer, and feature layer using the esri-
leaflet package.

42

Controls

43

43

Leaflet has default zoom controls

Can add different zoom controls with plugins
Example: Leaflet.zoomslider

(http://kartena.github.io/Leaflet.zoomslider/)
Example: L.Control.ZoomBar

(https://github.com/elrobis/L.Control.ZoomBar)
Example: Leaflet.twofingerzoom

(https://github.com/aratcliffe/Leaflet.twofingerzoom)
Example: Leaflet.BoxZoom

(https://github.com/gregallensworth/L.Control.BoxZoom)

No pan control provide by base Leaflet so must use plug-ins
Example: Leaflet.Pancontrol

(http://kartena.github.io/Leaflet.Pancontrol/)
Example: Leaflet.BorderPan

(https://github.com/slara/Leaflet.BorderPan)

Zoom and Pan Control

44

Leaflet provides a zoom control that is added by
default. However, there are a variety of packages for
adding other controllers. I have provided some
examples here.

44

Can use as a base map switcher

Can use to turn layers on and off

Layer Controls

objBasemaps = {
"OSM": lyrOSM,
"OSM Terrain":lyrTer,
"Night Lights":lyrNL,
"Dark":lyrDrk

};

objOper = {
"Cities":lyrcities,
"Percent Forest": lyrpfor,
"Mean Annual Temp.":lyrtemp,
"Total Annual Precip.":lyrprecip,
"States":lyrstates

};

ctlLayers =
L.control.layers(objBasemaps,
objOper).addTo(mymap);

45

Layer controls are used to switch between base
maps and/or turn layers on and off.

This is not added by default but can be turned on.

Only one base map can be active at once while
multiple operational layers can be active.

In order to provide a list of layers to include in the
control, you will need to generate variables that
store the base map layers and operational layers in
object notation. The provided name will be used in
the table.

45

The addTo() method is used to add the controls to
the map.

45

L.control.scale()

Options:
Maxwidth
Metric
Imperial
undateWhenIdle
position

Scale Control

L.control.scale().addTo(map);

46

A scale bar is not added by default, but you can use
the L.control.scale() method to add a scale bar.
There are also several options available.

46

Pop-ups and Tool Tips

47

47

Generate a pop-up tied to a map
feature or coordinate

Tooltip generally used for text
only

Pop-Ups vs. Tooltips

48

Pop-ups and tooltips are both user interface (UI)
layers similar to markers.

A pop-up can hold a wide variety of content while a
tooltip is meant to only hold text.

48

Use .bindPopup() or L.popup()

Options: maxWidth, minWidth, maxHeight, minHeight, keepInView,
closeButton, className

Content specified using HTML and attribute data

Style with CSS using className option

Build Pop-Ups

L.circleMarker(latlng, optCty).bindPopup("<p>" + att.NAME + ", "
+ att.ST + "
Elevation: " + att.elev + "
Annual Precip: " +
att.precip + "</p>", popupOptions);

49

A pop-up can be generated using the L.popup()
constructor method or the .bindPopup() method. A
variety of option are available.

Note that pop-ups can be styled with custom CSS
using the “className” option. You can think of
them as small webpages within your map and
webpage.

Pop-up content is defined using HTML. You can
also call attribute names. It is possible to include
text, links, images, and other HTML content.

A pop-up is being added to a layer in the provided

49

example using .bindPopup(). Note the use of HTML
to define the pop-up content and the use of attribute
variables. I also provide some pop-up options as a
variable.

49

Similar to methods for pop-up

Build Tooltip

return L.marker(latlng, optCty).bindTooltip("Font-
Awesome Icon");

50

This is an example of binding a tool tip to a marker.

50

Handling Events

51

51

Change view extent

Change map center

Change zoom level

Add/remove a layer

Change layer symbology

Pan to a location

Common Events

52

In order to add additional functionality to a map,
you can design event handlers that accomplish a
certain task. In the following examples, I will
demonstrate some event handlers that make use of
jQuery.

This slide lists some common web map events.

52

Example using jQuery

Other useful map methods: setZoom(), zoomIn(), zoomOut(),
fitBounds(), fitWorld(), panTo(), flyTo()

Set/Change Center and Zoom

$("#btnSalz").click(function(){
pmap.setView([47.798,13.059], zoom=12)

});

53

In this example, I am creating an event to set or
change the map view.

A button is assigned to the “btnSalz” class. When
the button is clicked the center and zoom level of
the map will be changed for the “pmap” map object
using the .setView() method.

The zoom level can be set using setZoom(),
zoomIn(), or zoomOut(). You can fit the map to a
defined rectangular bounds or to the bounds of a
data layer using fitBounds(). You can also pan or fly
to a location using panTo() or flyTo(). You can zoom
to a global extent using fitWorld().

53

Useful methods: addLayer(), removeLayer(), hasLayer(),
eachLayer()

Add and Remove Layers

$("#btnAddRem").click(function(){
if (pmap.hasLayer(lyrPhotos) == true) {

pmap.removeLayer(lyrPhotos)
} else {

pmap.addLayer(lyrPhotos)
});

54

This slide demonstrates how to add or remove
layers with the click of a button.

A button is assigned to the “btnAddRem” class. If
the button is clicked, then a function will be
executed. If the “lyrPhotos” layer is loaded, then the
layer will be removed. If it is not loaded, then it will
be added.

To test to see if the layer is load, the hasLayer()
method is used. To add or remove a layer,
addLayer() or removeLayer() is used.

The control flow allows for different responses

54

based on the map state.

54

Change Symbology or Style

$("#btnMrk2").click(function(){
pmap.removeLayer(lyrPhotos);
lyrPhotos = L.geoJSON.ajax('data/photos_points.geojson',
{pointToLayer:returnPntStyle1}).addTo(pmap);

});

55

In this example, the layer symbology is changed
with the click of a button.

When a button assigned to the “btnMrk2” class is
clicked, the “lyrPhotos” layer will be removed form
the “pmap” map object. It will then be added to the
map again with a different symbology, which is
defined by the “returnPntStyle1” function.

55

Plugin that allows you to easily add a button to a Leaflet map and set up
an action or an event for it to handle

Can use custom icons or icons from a library

L.EasyButton = https://github.com/CliffCloud/Leaflet.EasyButton

Easy Button

ctlEasybutton = L.easyButton('fa-compress-alt', function(){
ctlSidebar.toggle();

}).addTo(pmap);

56

The L.EasyButton plugin allows you to add a button
to the map that performs a certain action or event.
You can even apply custom icons to the button.

In this example, the easy button is assigned a logo
from the Font-Awesome library. When the button is
clicked, it will cause a sidebar to toggle between
open and closed.

56

Examples

57

57

58

Video: Leaflet Examples Overview

58

Example 1

59

59

Example 2

60

60

Example 3

61

61

Example 4

62

62

Example 5

63

63

Example 6

64

64

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Thanks! Hope you found this useful.

65

