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Presenter Notes
Presentation Notes
Welcome to Geospatial Deep Learning. This course was created by West Virginia View with support from AmericaView and the United States Geological Survey (USGS). Additional support was provided by the National Science Foundation (NSF). This course was designed for geospatial professionals and students that are interested in adding deep learning to their toolkit to answer questions with a spatial component. The lecture modules focus on key concepts associated with deep learning and applying these techniques to geospatial data. The code examples make use of the PyTorch package. It is assumed that you can already code in the Python language. If you have no prior experience with Python, we recommend that you work throughout our Methods in Open Science course before attempting this course. 

This course is broken into four broad components. The first component focuses on the basics of artificial neural networks and fully connected neural networks. The second component focuses on convolutional neural networks (CNNs) for scene labeling tasks while the third component focuses on CNNs for semantic segmentation. The last component discusses instance segmentation, generative models, and variational auto encoders. 

Deep learning has become a powerful tool for a variety of tasks across a wide range of professions and disciplines. For example, deep learning has resulted in significant advances in computer vision and scene understanding for autonomous vehicles. Google and Facebook use deep learning models to refine content based on use history. The analysis of medical imagery has also greatly benefited from these advancements. 

The geospatial sciences (GIScience, spatial modeling, and remote sensing) have adopted these methods to address key questions and needs. 

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks
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Presenter Notes
Presentation Notes
This slide lists some common uses of deep learning in the geospatial sciences. 

Generally, deep learning can be used to make predictions, such as the likelihood of a landslide occurring at a location, or to map features on the landscape surface, such as the location of buildings or the land cover occurring at a location. 

Deep learning can be applied to vector data and raster data. It can also be applied to time series data. 

In this course, we will focus on using deep learning for mapping and object detection. 

The links on this page are for two review articles that explore the use of deep learning in remote sensing. 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7486259
https://ieeexplore.ieee.org/abstract/document/8113128
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Presenter Notes
Presentation Notes
This slide provides some examples of geospatial deep learning projects. For example, Microsoft used deep learning techniques to map all buildings in the United States, a dataset that has been made freely available. Microsoft and the National Geographic Society offer grants yearly to individuals interested in applying deep learning to earth observation data and other environmental data. 

https://github.com/microsoft/USBuildingFootprints
https://azure.microsoft.com/en-us/blog/microsoft-and-esri-launch-geospatial-ai-on-azure/
http://lila.science/datasets/chesapeakelandcover
https://www.nationalgeographic.org/funding-opportunities/grants/what-we-fund/ai-earth-innovation/
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Presenter Notes
Presentation Notes
There are several frameworks, libraries, or packages available for implementing deep learning in a specific environment or coding language. Here, we will make use of PyTorch. 

PyTorch was originally developed by Meta, formally Facebook. The code is free and open-source. Management of PyTorch has now been handed over to the PyTorch Foundation, which is associated with the Linux Foundation. 

We are using PyTorch in this course, as opposed to other available deep learning environments (e.g., Tensorflow/Keras) because it is currently the leading environment, especially in regards to research applications. 
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Presenter Notes
Presentation Notes
This slide lists some other packages that we will make use of in this class. Torch-summary allows for generating summaries of model architectures. TorchMetrics provides access to a wide variety of assessment metrics. Segmentation Models allows fore easier implementation of a variety of semantic segmentation methods (e.g. UNet, UNet++, and DeepLabv3+). Albumentations is used for data augmentation and is especially useful when performing semantic segmentation task. Torchvision adds additional functionality to PyTorch associated with vision or image analysis tasks. Rasterio allows for reading and working with geospatial data in Python. 

https://pypi.org/project/torch-summary/
https://torchmetrics.readthedocs.io/en/stable/
https://github.com/qubvel/segmentation_models.pytorch
https://albumentations.ai/
https://pytorch.org/vision/stable/index.html
https://rasterio.readthedocs.io/en/latest/
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Presenter Notes
Presentation Notes
We will make use of several different datasets in the examples in this course. The EuroSat dataset will be used in the fully connected neural networks and convolutional neural networks component of the class. In the semantic segmentation component, we will use topoDL, which represent a binary pixel-level classification problem, and Landcover.ai, which represents a multiclass pixel-level classification problem. 

These datasets can be obtained at the links provided on this page. We have also provided citations for the papers that introduced the datasets. 

https://www.kaggle.com/datasets/apollo2506/eurosat-dataset
https://wvview.org/research.html
https://landcover.ai.linuxpolska.com/

O
o
WYV View Geospatial Deep Learning Examples

*am eresults_t. 36 obs. of 8 variables =
3 e tyrol 36 obs. of 5 variables L
] eval_set 36 obs. of 6 variables -
Elesp s RN o ®vienna 36 obs. of 5 variables =
ustin_im t. - values
austin_masks <- list.files s . e T
vienna_ing < list.files e i sl
vienna_masks <- list.files "o 4 36L
2 images chr [1:180] "austinl.tif" "
tyrol_img <- list.files( ¥ kap Named num 0.702
tyrol_masks <- Tist.files masks chr [1:180] "austinl.tif" "
name "tyrol-w9.tif"
kitsap_img <~ Tist.files e e "u: 0.993
kitsap_masks <- list.files
prec Named num 0.83

predicted3 0

- =2t \WWV View Deep Learning Examples

evalclass.. function (refei

austin_chips <- data.frame(Imac

3826 (op eveh

Fles [Pots Pactages belp  Viewer

1 austin £ 5 H . -
2 chicago 36 = - - Hegon -
3 kitsap 36
4 tyrol-w 36 B o ' - o
5 vienna 36 . | S
#Create c umns with fu vath * * O .
k_full paste0 - S - put_cit
o

The goal of this repository is to provide example workflows for geospatial deep learning. The primary focus is
—_—— S semantic segmentation for pixel-based classification. However, we will also provide examples demonstrating object
detection/instance segmentation and scene classification. We plan to continue to add examples and make updates.
This material is associated with the WV View Geospatial Deep Learning seminar. This seminar is not yet completed,

but should be released by August 2021.

WV View is supported by AmericaView and the U.S. Geological Survey under Grant/Cooperative Agreement No.
G18AP00077.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products

does not constitute their endorsement by the U.S. Geological Survey.

https://github.com/maxwell-geospatial/wvview geodl examples 2


Presenter Notes
Presentation Notes
Some additional examples have been provided on GitHub. We have also provided video walkthroughs (linked to the GitHub repo and hosted on YouTube). If you want to work through the additional examples, links to the data and required software tools have also been provided. 

https://github.com/maxwell-geospatial/wvview_geodl_examples

Conceptualizing Deep Learning
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Presenter Notes
Presentation Notes
Deep learning generally makes use of supervised learning, in which the algorithm learns from example data and input predictor variables. There are some deep learning methods that rely on unsupervised learning or semi-supervised learning. However, we will focus on supervised methods in this course. 

Conceptually, an algorithm is provided with predictor variables and labels. It then uses this information to produce a model, which can then be used to make predictions on new data. 

For example, a dataset could consist of images, in which the predictor variables are the image bands, and associated labels for each image. Each image could be labelled as a representation of a different environment (forest, grassland, pasture, agricultural field, urban, residential, etc.). These data could then be used to train an algorithm to label new images into one of the environmental classes. 
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Presenter Notes
Presentation Notes
Supervised learning requires that examples be provided upfront as training data or labels. The algorithm then uses the provided labels and predictor variables to “learn” or produce a model. 

In contrast, unsupervised learning does not required examples upfront. Instead, the algorithm attempts to cluster the data into categories. The user then assigns the generated clusters to informational classes. So, user-input is still required in unsupervised learning; however, this happens at the end of the process by assigning the learned categories or clusters to informational classes. In contrast, supervised learning requires user input as training data upfront. 

Since we will primarily work with supervised learning in this class, the examples used will consist of input labels and predictor variables. The nature of these data will depend on the problem being explored and the requirements of the algorithm. For example, the dataset could consist of images with associated categorical labels, in the case of convolutional neural networks, or images and pixel-level categorical masks, in the case of semantic segmentation. A large component of deep learning is data pre-processing to get your inputs into the right format for the algorithm to accept them. 

Semi-supervised methods allow for learning from both labeled and unlabeled data. These methods will not be a focus of this course. 
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Presenter Notes
Presentation Notes
Different types of features can be predicted using deep learning. 

The prediction of numeric or continuous data is commonly termed regression, such as linear regression, machine learning regression, or deep learning regression. 

Training data will consist of input predictor variables and a dependent variable that is continuous, such as percent canopy cover, amount of biomass, amount of carbon, concentration of a pollutant, median income, etc. 



https://www.mrlc.gov/index.php
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Presenter Notes
Presentation Notes
Categorical predictions involve assigning features to categories, such as types of land cover, types of forests, types of wetlands, types of animals, etc. 

Binary classifications are a special case where there are only two classes being separate, such as forest vs. not forest or wetland vs. not wetland. It is also common to attempt to separate a feature from the background. In such circumstances, we commonly use terms such as positive vs. negative, presence vs. absence, or yes vs. no. 

A variety of techniques are available to make categorical predictions. For example, the parametric methods maximum likelihood, parallelepiped, and minimum-distance-to-means have traditionally been applied to image classification and land cover mapping tasks. Logistics regression is a common technique for binary classification. 

Machine learning and deep learning have also been shown to be useful for classification problems. In fact, they often outperform traditional, parametric methods. 

Most of the examples that we will discuss in this course relate to classification problems. 
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INTERMATIONAL JOURNAL OF REMOTE SENSING, 2018 Tavior & F .
VOL. 39, NO. 9, 2784-2817 e aylor & Francis
hittps://doi.org/10.1080/01431161.2018.1433343 Taylor & Francks Group

REVIEW ARTICLE M) Chack

Implementation of machine-learning classification in remote
sensing: an applied review

Aaron E. Maxwell, Timothy A. Warner @ and Fang Fang

Department of Geology and Geography, West Virginia University, Morgantown, WV, USA

ABSTRACT ARTICLE HISTORY
Machine learning offers the potential for effective and efficient Received 28 October 2017
classification of remotely sensed imagery. The strengths of  Accepted 16 December 2017
machine leaming include the capacity to handle data of high KEYWORDS
dimensionality and to map classes with very complex character- Land-cover classification;
istics. Nevertheless, implementing a machine-learning classifica- image classification; land-
tion is not straightforward, and the literature provides conflicting cover mapping; machine
advice regarding many key issues, This article therefore provides learning

an overview of machine learning from an applied perspective. We

focus on the relatively mature methods of support vector

machines, single decision trees (DTs), Random Forests, boosted

DTs, artificial neural networks, and k-nearest neighbours (k-NN).

Issues considered include the choice of algorithm, training data

requirements, user-defined parameter selection and optimization,

feature space impacts and reduction, and computational costs. We

illustrate these issues through applying machine-learning classifi-

cation to two publically available remotely sensed data sets.
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Presenter Notes
Presentation Notes
This slide provides a link to an open-access review article on the use of machine learning in remote sensing. 

https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1433343
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Presenter Notes
Presentation Notes
Instead of predicting classes, it is also possible to predict the probability or likelihood of a feature belonging to a specific class. Such techniques are similar to classification problems, except that a probability is returned as opposed to a “hard” classification. 

When deep learning models predict categories, the result is generally a probabilistic prediction as opposed to a hard classification. The hard class is then derived from the probability using a defined probability threshold or returning the class with the highest predicted probability or logit. So, deep learning is well suited for probabilistic modeling. 
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Presenter Notes
Presentation Notes
What is the difference between machine learning and deep learning? Deep learning is not different from machine learning. Instead, it is a special type of machine learning that relies on artificial neural networks with many hidden layers. It is a branch of machine learning. 

There are many machine learning methods that do not make use of deep artificial neural networks, such as tree-based methods (e.g., decision trees, boosted decision trees, and random forests) and kernel-based methods (e.g., support vector machines). 

There are also sub-types of deep learning, such as convolutional neural networks and semantic segmentation. 


The Supervised Learning Process
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Presenter Notes
Presentation Notes
This slide outlines the process used to apply machine learning and deep learning methods to make spatial predictions. 

Since deep learning relies of supervised classification, you will need to develop training data, such as labels and associated predictor variables. The nature of these data will depend on the methods applied. 

In order to validate your models, you will also need a second set of withheld testing data. It is also common to use a separate withheld validation set to assess the model at the end of each training epoch, or iteration over the training set. 

Data must then be preprocessed so that they are uitable as input to the specific modeling technique. This could consist of centering and scaling data, generating tables, or generating image chips and associated labels or masks. 

Once a final model is generated by the learning process, it needs to be evaluated using the testing data. 

Once a suitable model is obtained and validated, it can be applied to new data to make predications and maps. 

We will discuss this process in more detail in later modules, and you will see examples of this workflow as implemented with PyTorch. 
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Presenter Notes
Presentation Notes
Supervised learning requires training samples. These samples represent examples of the classes or values you are trying to predict. 

The algorithm will then use these examples and the predictor variables at these locations to make a model that can be used to predict new locations.

I have found that the quality of the training samples has a large impact on the quality of the prediction. 

When creating training samples, they need to be spatial explicit, or you need to know where they exist in the map space. 

They also most be representative of the population. For example, if you are trying to predict where a certain tree might grow and it is known to grow on both ridges and floodplains, then you need to give the algorithm examples of known locations where the tree has been found to grow in both floodplains and along ridges. 

You need to provide an adequate number of samples and an adequate number of samples per class. The number of samples required will vary based on the complexity of the problem and the methods used. I generally try to provide as many quality training samples as possible given limitations and constraints. Collecting a large number of training samples can be difficult due to time, cost, and access constraints. 

Lastly, the data should be accurate. If the algorithm is given mislabeled or poor examples, it will have difficulty creating a useful model. Garbage in, garbage out. 
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Presenter Notes
Presentation Notes
For binary classifications, it is common to only have examples of truth or presence training data. However, most algorithms require examples of both true and false, or presence and absence data. 

If absence data are not available, it is sometimes necessary to generate pseudo-absence data, such as random background points. 

This generally requires some assumptions and can be difficult to implement. 
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Presenter Notes
Presentation Notes
It would make sense to provide as much information or as many predictor variables as possible. For example, if you are buying a car, more information will make you a more informed consumer. 

However, this has generally been found to not be the case in predictive modeling. This is known as the Hughes Phenomenon or Curse of Dimensionality. This suggests that adding more predictor variables can actually decrease the performance of the model. This is because, even though more information is being provided, the complexity of the problem increases. 

This problem is generally more pronounced when a small training set is used. This is because more samples will need to be provided to deal with the complex dimensionality of the problem. 

Fortunately, some algorithms are fairly robust to this problem. Also, methods are available to reduce the number of variables or select the most useful variables. This is outside the scope of this course. �
Deep learning algorithms are generally not provided a large number of predictor variables or a large feature space. Instead, the deep network is expected to learn data abstractions from the input predictor variables. 
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Presenter Notes
Presentation Notes
Testing or validation data must also be provided to assess the model performance and map output. In deep learning, validation data refer to withheld samples used to assess the model at the end of each training epoch while testing data are used to assess the final model. 

In order to produce an unbiased estimate of the performance, the testing and validation data must be randomized in some way. 

Also, the training and validation data should not overlap with each other or the testing samples, or the same samples should not be included for both training and assessment. This is because algorithms tend to do a better job of predicting the training samples as opposed to new locations, a phenomenon known as overfitting. So, including training samples as testing or validation samples could inflate the reported performance. 

It is also recommended that testing and validation samples be correctly proportioned relative to the map. For example, if you are mapping land cover and 70% of the mapped area is forest, then 70% of the testing and validation samples should also be forest. 

Lastly, testing and validation data should be accurate. The goal here is to compare the map product to reference data of higher quality. It is generally assumed that no data are perfect. So, even the testing and validation data will have some error. We try to avoid using the terms “ground truth” or “ground truthing” for this reason.

In later modules, we will discuss model training and assessment methods specific to deep learning.  
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Presenter Notes
Presentation Notes
Deep learning data preparation, training, validation, and implementation are commonly conducted using scripting or code. Currently, Python is the most used  language for deep learning. R can also be used, but it generally relies on Python for deep learning implementation and is not as robust. We will also explore some examples using ArcGIS Pro that do not require any coding. 

When you work in code, it is generally a good idea to comment and document your code. If you use code generated by another analyst or scientist, you should cite it. 

To support reproduceable science, it is generally good to share your data and code if possible. For example, you could make a GitHub repository for your project. 
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Presenter Notes
Presentation Notes
Again, I will provide examples using ArcGIS Pro and Python/PyTorch.

When using Python, it is common to use Anaconda to set up a research environment that has access to all the required packages, libraries, or modules needed to support deep learning, such as PyTorch, NumPy, and Pandas. I will provide a video that steps through this process. Luckily, all of these technologies are open-source and free. 

https://www.python.org/
https://pytorch.org/
https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html
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Presenter Notes
Presentation Notes
A large set of packages or libraries have been developed to build upon the functionality of PyTorch and/or make it easier to apply deep learning for specific tasks. This website provides links to these packages. 
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Presenter Notes
Presentation Notes
At the time of this writing, deep learning is more developed in Python than it is in R. However, the deep learning options in R continue to grow. For example, the torch package is being developed to provide a PyTorch-like implementation in R. Since the Python/PyTorch environment is more developed, we will focus on Python in this class. 
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Presenter Notes
Presentation Notes
Keras is an application programming interface (API) written in Python. It allows users to develop their models and experiments using Python as opposed to a more complex language, such as C++. 

Keras provides an interface to multiple backends, including Tensorflow. Tensorflow is written in C++ and has a much steeper learning curve. Keras simplifies the implementation of deep learning. 

Keras was originally developed for Python, but there is now a Keras API for R that relies on the Python API. So, you can now use Keras in R, but you will need to set up a Python environment that R can connect to. 

I have chosen to use PyTorch as opposed to Keras/Tensorflow here based on current trends and PyTorch’s focus on research applications. 

https://keras.rstudio.com/
https://keras.io/
https://www.tensorflow.org/
https://github.com/Theano/
https://github.com/microsoft/CNTK
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Presenter Notes
Presentation Notes
If you do not want to learn to code or further develop your coding skills to apply deep learning to your data, ArcGIS Pro now includes deep learning tools to create training data, train models, and apply models. These tools are available with a valid Image Analyst extension license. 

You can also use ArcGIS Pro deep learning functions in Python scripts by referencing ArcPy and the arcgis.learn module, which provides functions and classes for deep learning. 

https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html
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Presenter Notes
Presentation Notes
At the time of this writing, ArcGIS Pro and the argis.learn module include functions, classes, and tools to perform object detection, semantic segmentation, and instance segmentation. 

There are also tools available to train models, apply models, and develop training data, such as image chips and associated labels or masks. 

https://developers.arcgis.com/python/api-reference/arcgis.learn.html
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Presenter Notes
Presentation Notes
Again, deep learning can be very slow on CPUs, even high-end, multi-core CPUs. 

If you plan to work with deep learning, and especially if you want to use convolutional neural networks, a graphics card is required. Currently, NVIDIA is the only graphics card company that has invested in deep learning. So, you will specifically need an NVIDIA GPU that is CUDA-enabled. The links on this page provide a list of CUDA-enabled graphics cards and also links to required toolkits, which are currently free. 

GPUs can be very expensive. However, it is possible to do some deep learning on fairly inexpensive GPUs built for gaming computers. I currently use the GeForce RTX 2080 Ti 11GB GPU. It is also possible to install multiple GPUs. For example, you can purchase deep learning workstations that include 4 GPUs. 

Other than the GPU, it is generally good to use a solid-state hard drive, since this will improve transfer and processing speed. You should have at least 16GB of RAM available and a decent CPU. 

If you do not want to set up your own hardware, another option is to set up a virtual machine from a service provider, such as Microsoft Azure or Amazon AWS. Unfortunately, this can get expensive since pricing is generally based on computational time. 

Lastly, Google Colab provides free access to GPU resources; however, availability is based on demand and there are processing time/computational load limitations. 

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-gpus
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/

“*Set Up Anaconda environment

“»Data science libraries/modules = pytorch, numpy, pandas, matplotlib,
scipy, scikit-learn, scikit-image

“*Geospatial libraries/modules = geopandas, rasterio

J ANACONDA NAVIGATOR

=
Jupyter
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As mentioned above, it is generally best to create an Anaconda Environment if you plan to use Python for data science and machine learning/deep learning.

Several packages are required for data science with Python including NumPy, Pandas, and matplotlib. For deep learning, you will also need to install PyTorch. If you need to work with and process geospatial data, GeoPandas and Rasterio are useful.

One headache when doing deep learning with Python is making sure that all the needed packages are installed into your environment and that they are the correct version. You will also need to make sure that Python is able to access your GPU. I have provided a video on this topic. 


VS Code
“*Google CoLab

“*Spyder

o«

) File Edit Selection View Go Run Terminal Help

https://code.visualstudio.com/

(] T5_datasets dataloaders.ipynb ®
C: » Users » amaxwelé > Dropbox > Teaching_WVU > wview_website > dl > pytorch_examples » notebooks * B T5_datasets_dataloaders.i
+ code + Markdown | [ RunAll = Clear All Outputs D Restart | [ variables = Outline ==

LENSUL3 )

https://code.visualstudio.com/
- A Dataset and Dataloader for Images and Labels

train.head()
https://www.spyder-ide.org/
pS' 'S‘. y €r-1de.or file fullpath g
0 AnnualCrop_35.tif  C:/Users/amaxwel6/Downloads/eurosat/EuroSATall..  AnnualCrop 0
1 AnnualCrop_1133.6f C:/Users/amaxwelé/Downloads/eurosat/EurcSATall..  AnnualCrop ]
2 AnnualCrop 2071.tf Cy/Usersfamaxwelé/Downloads/eurosat/EurcSAlall.. AnnualCrop 0
httD S : / /D O Sit X CO / 3 AnnualCrop_2100.tif C:/Users/famaxwel6/Downloads/eurosat/Euro5ATall.. AnnualCrop 1]
. = . = 4  AnnualCrop_2043.tif C:/Users/amaxwel6/Downloads/eurosat/EurcSATall.. AnnualCrop 1]

EuroSat(Dataset):

__init_ (self, df, mnImg, sdImg):
self.df = df

self.mnImg = mnImg

self.sdImg = sdImg

__getitem (self, idx):
image_name = self.df. 11D:[1dx 1]
label = self.df. 110([1dx 3]
label = np.array(label)
source = ri n{image_name)

\ y image = source.read{)
source. close()
. image = ima [[l,A,B,A,J,":,?,S,l 8o 84 2]
image = np. ct{image, self.mnImg)
image = np.di mage, self.sdImg)

image = image.
image = torch.
label = torch. |
label = label.long()

image, label

__len__ (self):
len({self.df)

https://posit.co/blog/three-ways-to-program-in-python-with-rstudio/
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There are a variety of integrated development environments (IDEs) available for Python. I prefer either VS Code or RStudio, both of which are free. If you do not want to set up a local Python environment, you can make use of Google CoLab; however, there are usage caps, as noted in a prior slide. 

As you work through the course materials, feel free to use the IDE of your choosing. 

https://posit.co/blog/three-ways-to-program-in-python-with-rstudio/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.spyder-ide.org/
https://posit.co/

4B T1_Fully_Connected_NN.qmd*
4= Al [ @ Renderon Save

Source  Visual
91 1f you are having trouble following the syntax, you may nheed to

review how classes and subclassing is implemented with Python.

For example, if you are confused by the use of the self

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

variable, there is a good chance that you need to further

¥

=5 Render &% -

investigate classes.

" {python}

class myFCN(nn.Module):

def __init_ (self,

super().__init__

self.inSize = inSize
self.hiddenSize = hiddenSizes
self.outSize = outSize

self.1linl
self.1in2
self.1in3

inSize, hiddenSizes, outSize):

nn.Linear(inSize, hiddenSizes|[0

nn.Linear(hiddenSizes|[0
nn.Linear(hiddenSizes|[1

, hiddenSizes[1
, outSize

Sy ¢

Welcome to Quarto

Quarto is an open-source scientific and technical
publishing system built on Pandoc

Create dynamic content with Python, R, Julia, and Observable.
Author documents as plain text markdown or Jupyter notebooks.

Publish high-quality articles, reports, presentations, websites, blogs,
and books in HTML, PDF, MS Word, ePub, and more.

Author with scientific markdown, including equations, citations,

crossrefs, figure panels, callouts, advanced layout, and more.

Get Started
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Quarto is a tool that allows for rendering code and Markdown to final products, such as PDFs, Microsoft Word documents, HTML webpages or websites, books, and presentations. I used Quarto to render the PyTorch example modules for this class and have made the Quarto documents available for download on the course webpage. 

https://quarto.org/

o
P Deep Learning in ArcGIS Pro

Download
README.md

DOWNLOADS 11K

Deep Learning Libraries Installers for ArcGIS

y Once you've downloaded the archive for your product, extract the Zip file to a new location, and run the Windows

A h %CiP‘.\t-H'ﬂﬂg(‘? Installer (MSI, e.g. ) on Windows. You'll need to extract the file (not just open the .MSI from
within the Zip file) or the installer won't be able to find its contents. On Linux, extrac the .tar.gz archive, e.g. with
eewut , then run the script. After installation, the archive and installer files can be

® Deep Learning Libraries Installer for ArcGIS Pro 2.7
® Deep Learning Libraries Installer for ArcGIS Pro 2.6
¢ Deep Learning Libraries Installer for ArcGIS Server 10.8.1

® Deep Learning Libraries Installer for ArcGIS Server Linux 10.8.1

deleted.

m plotly . Manual Installation

[/ DASK

f. ‘t : If you cannot use the Pro installer, you can install the libraries manually using these instructions:
ast.al

® Pro 2.7 Manual Installation Instructions

Te nsor FI Ow S p a C y ® Pro 2.6 Manual Installation Instructions

ArcGlIS Pro, Server and the ArcGIS API for Python all include tools to use Al and Deep Learning to solve geospatial Installation for Disconnected Environment
problems, such as feature extraction, pixel classification, and feature categorization. This installer includes a broad

collection of components, such as PyTorch, TensorFlow, Fast.ai and scikit-learn, for performing deep learning and

If you will be working in a disconnected environment, download the arcgis_dI_backbones package and follow the

machine learning tasks, a total collection of 99 packages. These packages can be used with the Deep Learning Training instructions under the Steps to Install listed on the package page. The package places backbones for deep learning
tools, interactive object detection, by using the module within the ArcGIS API for Python, and directly models in the specified install location, eliminating the need for internet access when training deep learning models in
imported into your own scripts and tools. Most of the tools in this collection will work on any machine, but common ArcGIS.

deep learning workflows require a recent NVIDIA graphics processing unit (GPU), and problem sizes are bound by
available GPU memory, see the requirements section.
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It is also possible to use the built-in Python environment that installs with ArcGIS Pro. However, you will need to update it to include the needed deep learning libraries. I have provided a video on this topic. 

https://github.com/Esri/deep-learning-frameworks

Q Video: Set Up ArcGIS Pro for Deep Learning

Pixel Classification Models
UnetClassifier

class arcgis.learn.UnetClassifier(data, backbone=MNone, pretrained_path=None, backend="pytorch’,
-Mapp nodule “args, *“kwargs)

Itime mocule Creates a Unet like classifier based on given pretrained encoder.

arcgis.schematics module
Argument Description
jgets module
L Required fastai Databunch. Returned data object from prepare_data
s module data function
B 5.l . , .
arcgicleatis moduls EackBone Optional function. Backbone CMN model to be used for creating the
| Data Preparation Methads base of the UnetClassifier, which is resnet34 by default.

Object Classification Models pretrained_path Optional string. Path where pre-trained model is saved

= Object Detection Models Optional string. Controls the backend framewaork to be used for this
backend madel, which is 'pytorch’ by default.
FasterRCNN valid options are ‘pytorch’, ‘tensorflow’

Retinahet
YOLOVE kwargs

SingleShotDetector e
Argument Description

MaskRCHNN
5 i i class balancing Optional boolean. If True, it will balance the cross-entropy loss inverse
Pixel Classification Models = E to the frequency of pixels per class. Default: False.

Image Translation Models Optional boolean, If True, it will use mixup augmentation and mixup

3D Models kil loss. Default: False

Scanned Maps focal_loss Optional boolean. If True, it will use focal loss Default: False
Tabular and Feature Data Models Optional float. Min_val=0, Max_val=1If > 0, model will use a
combination of default or focallif focal=True) loss with the specified
fraction of dice loss. E.g. for dice = 0.3, loss = (1-0.3) default loss +
0.3%dice Default; O

Unstructured Text Models £ice oas trackon
Inferencing Methods (Image Server)
Optional list. It will contain the list of class values on which modal will

i clas: b S
lgnore_classes not incur loss, Default; [1




Video: Set Up Python Environment for Deep
Learning
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Please return to the West Virginia View
Webpage for additional content.
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Presentation Notes
Thanks! Hope you found this useful. 
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