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Loss and Assessment 
Metrics

Geospatial Deep Learning

Presenter Notes
Presentation Notes
The loss metric is a key component of the learning process, as it guides the parameter updates. Also, obtaining an unbiased assessment of model performance generally requires predicting to withheld testing or validation data and using appropriate assessment metrics. Thus, it is important to understand assessment and loss metrics if you want to implement deep learning. This section will begin with a discussion of assessment metrics for both regression and classification problems followed by a discussion of loss metrics. 
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Unbiased

Randomized

Non-overlapping with 
your training data

Correctly proportioned

Accurate

Developing Testing or Validation Data
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Presenter Notes
Presentation Notes
Before we begin, let’s review the concepts of testing and validation data. In deep learning, the validation data are used to assess the model at the end of each training epoch while the testing data are used to assess the final model. In order to produce an unbiased estimate of performance, the testing and validation data must be randomized in some way. Also, the training and validation data should not overlap with each other or the testing samples, or the same samples should not be included for both training and assessment. This is because algorithms tend to do a better job of predicting the training samples as opposed to new locations, a phenomenon known as overfitting. So, including training samples as testing or validation samples could inflate the reported performance. It is also recommended that testing and validation samples be correctly proportioned relative to the map. For example, if you are mapping land cover and 70% of the mapped area is forest, then 70% of the testing and validation samples should also be forest. Lastly, testing and validation data should be accurate. The goal here is to compare the map product to reference data of high quality. It is generally assumed that no data are perfect. So, even the testing and validation data will have some error. We try to avoid using the terms “ground truth” or “ground truthing” for this reason.



yardstick

caret

rfUtilities

diffeR

pROC

multiROC
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Accuracy Assessment in R

https://yardstick.tidymodels.org/

https://topepo.github.io/caret/

https://www.rdocumentation.org/packages/pROC/versions/1.18.0

https://cran.r-project.org/web/packages/diffeR/index.html

https://cran.r-project.org/web/packages/rfUtilities/index.html

https://cran.r-project.org/web/packages/multiROC/index.html

Presenter Notes
Presentation Notes
I have found the R language and environment to be very useful for assessing models since several packages provide implementations of key assessment metrics. This slide provides links to some R packages that are especially useful for performing model assessment. 

https://yardstick.tidymodels.org/
https://topepo.github.io/caret/
https://www.rdocumentation.org/packages/pROC/versions/1.18.0
https://cran.r-project.org/web/packages/diffeR/index.html
https://cran.r-project.org/web/packages/rfUtilities/index.html
https://cran.r-project.org/web/packages/multiROC/index.html


scikit-learn

TorchMetrics
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Accuracy Assessment in Python

https://torchmetrics.readthedocs.io/en/stable/

https://scikit-learn.org/stable/

Presenter Notes
Presentation Notes
I have found the TorchMetrics package to be especially useful when implementing assessment metrics within training and validation loops as it allows for metrics to be accumulated or aggregated across multiple batches. This package will be demonstrated throughout the PyTorch modules. Scikit-learn also provides access to a variety of assessment metrics and tools. 

https://torchmetrics.readthedocs.io/en/stable/
https://scikit-learn.org/stable/


Accuracy Measures: Regression
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RMSE = √ Σ(y - ŷ)2/n

Root Mean Square Error (RMSE) will be in the units of y

Mean Square Error (MSE) = Σ(y - ŷ)2/n

RMSE
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Presenter Notes
Presentation Notes
Continuous or numeric predictions, as opposed to classifications, can be assessed using root mean square error or RMSE. MSE, or Mean Square Error, is simply RMSE without the square root applied. RMSE is reported in the units of the variable being predicted while MSE is reported in the square of the units. For example, if you are predicting chemical concentration in parts per million, then RMSE will be reported in parts per million and MSE will be reported in parts per million squared. RMSE is calculated by comparing the predicted values to the reference values provided in the validation or testing data. The values are subtracted to obtain a residual or error. The residuals are then squared, summed, then divided by the number of samples. This will provide MSE. The square root is taken to obtain RMSE. Lower RMSE and MSE suggests better performance. 



R2 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑞𝑞𝑆𝑆𝑇𝑇𝑞𝑞𝑞𝑞𝑠𝑠 − 𝑅𝑅𝑞𝑞𝑠𝑠𝑅𝑅𝑅𝑅𝑆𝑆𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑞𝑞𝑆𝑆𝑇𝑇𝑞𝑞𝑞𝑞𝑠𝑠
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑞𝑞𝑆𝑆𝑇𝑇𝑞𝑞𝑞𝑞𝑠𝑠

Total Sum of Squares = Σ(y - ȳ)2

Residual Sum of Squares = Σ(y - ŷ)2

Proportion of variance in y explained by the model

R2
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Presenter Notes
Presentation Notes
Another means by which to assess continuous predictions is R2. This value represents the proportion of variance in the quantity being predicted explained by the model. It is scaled from 0 to 1. 0 indicates that no variance is explained, or this is a poor model, while 1 indicates that all variance is explained. So, higher values are better. Again, this measure would not be appropriate for assessing a classification. R2 is not strictly a measure of model accuracy or performance. Instead, it is a measure of variance explained. However, it is still useful for assessing models.



When you have more than one x (multiple regression) you have to use 
adjusted R2

Adjusted R2 = 1 - (1−𝑅𝑅2)(𝑁𝑁−1)
(𝑁𝑁−𝑝𝑝−1)

N = sample size, p = number of variables

Adjusted R2

8

Presenter Notes
Presentation Notes
When using the training data and when more than one predictor variable is used, R2 must be modified to obtain adjusted R2 to deal with inflation. The equation requires altering R2 based on the sample size and number of predictor variables. Note that it is not necessary to perform this adjustment when the withheld testing or validation data are used to obtain R2 as opposed to the training data. 
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Other Metrics

Akaike Information Criterion (AIC)
Used for model comparisons
Based in information theory
Considers goodness of fit
Penalizes for increased number of predictor variables/model complexity
Larger value is better

Bayesian Information Criterion (BIC)
Based on Bayes’ Theorem
Considers goodness of fit
Penalizes for increased number of predictor variables/model complexity
Lower value is  better

Presenter Notes
Presentation Notes
Another option is the Akaike Information Criterion or AIC. This is a measure of the relative quality of statistical models based on information theory. It takes into account both the goodness of fit (i.e., accuracy) and the complexity of the model. Specifically, models are penalized for having a larger number of included predictor variables. AIC is generally used to compare between models and select the best performing models while also taking into account the number of predictor variables. Larger values are preferred. An alternative to AIC is the Bayesian Information Criterion (BIC). Similar to AIC, this method takes into account model performance while also penalizing for a large number of predictor variables. In contrast to AIC, it is based on Bayes’ Theorem, and lower values indicate a better model as opposed to larger values, which is the case for AIC. AIC and BIC are not commonly used in deep learning applications. 



Accuracy Measures: Multiclass 
Classification
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Explores 
confusion 
between 
classes

How were 
the classes 
confused?

Should be 
created 
from 
randomized 
validation 
data

Confusion Matrix or Error Matrix
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Reference Data

Forested Pasture/
Grass Barren Cropland Developed Water Total User’s

Accuracy

Classified
Data

Forested 91 8 1 11 0 2 113 81%

Pasture/
Grass 4 81 0 15 0 0 100 81%

Barren 0 0 87 2 10 2 101 86%

Cropland 3 11 0 69 0 0 83 83%

Developed 0 0 10 0 73 0 83 88%

Water 2 0 2 3 17 96 120 80%

Total 100 100 100 100 100 100

Producer’s 
Accuracy 91% 81% 87% 69% 73% 96%

Presenter Notes
Presentation Notes
Many assessment metrics for classification problems are based on the confusion matrix, which is also commonly referred to as an error matrix. Using validation or testing samples, a confusion matrix compares the correct or reference classification at a location to the predicted class. Diagonal cells, shaded gray in the example, represent correct classifications. For example, 91 samples in the example were of the forested class and were correctly labelled as forested. All off-diagonals cells represent errors or misclassifications. For example, 4 samples were forested but were incorrectly labelled as pasture/grass. The confusion matrix is very informative since it doesn’t just summarize the total amount of error, but also differentiates sources of error. An analysis of the confusion matrix allows for an understanding of what classes are well mapped or poorly mapped and what classes are most confused with one another. For example, 15 cropland locations were misclassified as pasture/grass while 11 pasture/grass samples were misclassified as cropland. This indicates that these two classes are commonly confused. In contrast, only 4 of the water samples were misclassified to another class, suggesting that water is well mapped or differentiated. It is important to note that the quality of the assessment will depend greatly on the quality of the validation or testing data. In remote sensing, we tend to avoid using the term “ground truth” for validation samples since it is assumed that even ground samples will have some errors or miss-classifications. Instead, we tend to use the term validation data or testing data. Even if there are errors, it is assumed that the validation data are more accurate than the classification that is being assessed. So, it is important to compare your classification to a dataset this is more accurate. Also, it is generally best that validation samples are collected using randomized sampling methods so as not to bias the assessment. If an analyst hand-picks validation samples, these samples are likely to not represent the true landscape conditions. 



Confusion Matrix or Error Matrix

Reference Data

Forested Not
Forest Total User’s

Accuracy
Classified

Data
Forested 94 15 109 86%

Not Forest 6 85 91 93%%

Total 100 100

Producer’s 
Accuracy 94% 85%

Explores confusion between classes

How were the classes confused?

Should be created from randomized validation data
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Presenter Notes
Presentation Notes
This slide provides another example of an error matrix with only two classes. 



What can be calculated from a confusion matrix?

Overall Accuracy =

Class User’s Accuracy =

Class Producer’s Accuracy =

Metrics

Number of Features Correctly Classified
Total Number of Features

Number of Features of Specific Class Correctly Classified
Row Total

Number of Features of Specific Class Correctly Classified
Column Total

X 100

X 100

X 100
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Presenter Notes
Presentation Notes
From the confusion matrix, it is possible to derive measures of overall classification accuracy and class-level accuracies. Overall accuracy is simply the number of correctly classified samples divided by the total number of samples. Or, it is the sum of the diagonal divided by the sum of the entire table. This metric is generally reported either as a proportion (0 to 1) or as a percentage (0% to 100%). We will discuss the class-level accuracies on the next slide. 



Metrics

Number of Features of Specific Class Correctly Classified
Row Total

Number of Features of Specific Class Correctly Classified
Column Total

X 100 X 100

User’s Accuracy

1 - Commission error
Probability that a feature 

classified on the map 
actually represents that 
category

Producer’s Accuracy

1 - Omission error
Probability of a reference 

feature being correctly 
classified
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Presenter Notes
Presentation Notes
For each mapped class, two different measures of accuracy can be calculated. User’s accuracy is 1 minus the commission error (error associated with samples being included in the wrong class). In contrast, producer’s accuracy is 1 minus omission error (error associated with samples not being included in the correct class). Or, user’s accuracy represents the probability that a feature classified on the map actually represents that category on the ground whereas producer’s accuracy relates to the probability of a reference feature being correctly classified. Similar to overall accuracy, these metrics are reported as proportions (0 to 1) or percentages (0% to 100%). The standard way to generate a confusion matrix is to define the columns using the reference data classifications and the rows using the predicted classes. When the rows and columns are defined using this standard, user’s accuracy for each class is calculated as the number correct for the class divided by the row total, which represents the number of samples mapped to that class. In contrast, producer’s accuracy for a class is the number correct for the class divided by the column total, which represents the number of samples from that class in the validation data. I actually find these terms to be very confusing. I prefer to simply report commission and omission error, as I feel these terms are more easily understood. However, reporting user’s and producer’s accuracy is the standard in remote sensing. 



Kappa

 Kappa, Kappa Statistic, Cohen’s Kappa, K-Hat (�𝐾𝐾)

 Sometimes you are right by random chance

 Kappa offers an adjustment of overall accuracy that takes into account 
random or change agreement

 It is considered to be more robust than overall agreement

]Total Number of Features ∗ Number of Correct Features − [Sum of All Row Totals ∗ Column Totals
]Total Number of Features squared − [Sum of All Row Totals ∗ Column Totals
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Presenter Notes
Presentation Notes
Sometimes features are correctly classified simply by random chance. The Kappa statistic offers a correction of overall accuracy that takes into account chance agreement. It is a commonly reported metric in remote sensing. The numerator of Kappa is calculated as the total number of features multiplied by the number of correct features. From this, you subtract the sum of all the row and associated column totals. The denominator is calculated as the square of the number of samples with the sum of all the row and associated column totals subtracted. Other terms used for Kappa include the Kappa statistic, Cohen’s Kappa, and K-Hat  (𝐾 ).  𝐾  indicates that a population statistic is being estimated from a sample. Kappa is generally reported as a proportion (0 to 1) as opposed to a percentage. It is also possible to calculate confidence intervals and statistically compare Kappa values for different classifications. We will not discuss these additional statistical considerations in this course. 



Calculation Example 1

Overall Accuracy

= 91+81+87+69+73+96
600

= 0.828 or 82.8%

Kappa 

=

(((91+81+87+69+73+96)∗600) –
(100∗113+100∗100+100∗101+100∗83+100∗83+100∗120))

(6002 –
(100∗113 +100∗100+100∗101+100∗83+100∗83+100∗120))

= 0.794
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Reference Data

Forested Pasture/
Grass Barren Cropland Developed Water Total User’s Accuracy

Classified
Data

Forested 91 8 1 11 0 2 113 81%

Pasture/
Grass 4 81 0 15 0 0 100 81%

Barren 0 0 87 2 10 2 101 86%

Cropland 3 11 0 69 0 0 83 83%

Developed 0 0 10 0 73 0 83 88%

Water 2 0 2 3 17 96 120 80%

Total 100 100 100 100 100 100

Producer’s 
Accuracy 91% 81% 87% 69% 73% 96%

Presenter Notes
Presentation Notes
Class user’s and producer’s accuracies have already been calculated on the margins of this example confusion matrix. Make sure you understand how these measures were derived. I have now provided the calculations for overall accuracy and Kappa. Make sure you understand how these calculations were derived. For this example, overall accuracy was 0.828 while Kappa was 0.794. 



Calculation Example 2

Overall Accuracy

= 94+85
200

= 0.895 or 89.5%

Kappa 

=

(((94+95)∗200) –
(100∗109+100∗100∗91))

(2002 –
(100∗109+100∗100∗91))

= 0.890
17

Reference Data

Forested Not
Forest Total User’s

Accuracy
Classified

Data
Forested 94 15 109 86%

Not Forest 6 85 91 93%%

Total 100 100

Producer’s 
Accuracy 94% 85%

Presenter Notes
Presentation Notes
This slide provides the metric calculations for the second example. 



Should we use Kappa?

Pontius Jr, R.G. and Millones, M., 2011. Death to Kappa: birth of quantity disagreement 
and allocation disagreement for accuracy assessment. International Journal of Remote 
Sensing, 32(15), pp.4407-4429.

Foody, G.M., 2020. Explaining the unsuitability of the kappa coefficient in the 
assessment and comparison of the accuracy of thematic maps obtained by image 
classification. Remote Sensing of Environment, 239, p.111630.
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Presenter Notes
Presentation Notes
Some researchers have argued that the Kappa statistic should no longer be used. Specifically, they argue that the adjustment for chance agreement is not necessary and misleading. Despite these suggestions, Kappa is still a very commonly reported metric. So, I have included an explanation of it in this course. However, you should be aware that its use is currently somewhat controversial. If you are interested in this debate, I would recommend the papers referenced on this slide. 



Quantity disagreement = Difference in 
proportion of classes

Allocation disagreement = Difference in spatial 
allocation of classes (further divided into 
exchange and shift)

Quantity Disagreement + Allocation 
Disagreement = Overall Disagreement

Alternatives to Kappa
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Presenter Notes
Presentation Notes
Pontius and Millones (2011) suggest some alternative metrics to replace Kappa. Specifically, they have argued for the use of quantity disagreement and allocation disagreement. Quantity disagreement relates to the differences in proportions of classes between the reference data and classification result whereas allocation disagreement, which is further divided into exchange and shift disagreement, relates to differences in the location or spatial allocation of the refence data and classification result. I feel that these metrics are informative and worth including in accuracy assessment workflows and reports. However, they have not gained wide use and acceptance in the field. 



Map-Level Image Classification Efficacy

Alternative to Kappa

MICE

20

Shao, G., Tang, L. and Zhang, H., 2021. Introducing image 
classification efficacies. IEEE Access, 9, pp.134809-
134816.

Presenter Notes
Presentation Notes
Another alternative to Kappa that has been recently suggested is the map-level image classification efficacy (MICE) metric. We will not discuss this metric in detail in this course. However, if you are interested in learning more, please have a look at the publication referenced here. In contrast to Kappa, MICE only uses the reference class margin totals as opposed to both the reference and classification margin totals to adjust overall accuracy for chance agreement. This method has been suggested to be robust to accuracy inflation due to chance agreement and meaningful when the number of samples per class is imbalanced while not suffering from the logical flaws of Kappa.



Video: Confusion Matrix
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Video: Accuracy Assessment in R
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Accuracy Measures: Binary 
Classification

23



Precision

Recall or
Sensitivity

F1 Score
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Precision, Recall, and F1 Score

TP
TP + FN

TP
TP + FP

2 X
Precision X Recall
Precision + Recall

Predicted

Class = Yes Class = No

Reference 
Class

Class=Yes TP FN

Class=No FP TN

 Specificity TN
TN + FP

 Negative Predictive Value (NPV)

TN
TN + FN

Presenter Notes
Presentation Notes
When only a single class is differentiated from the image background, as is common in feature extraction tasks, or when only two classes are mapped to generate a binary output, an alternative terminology is commonly used in comparison to multiclass classification. Specifically, if one category represents a positive case while the other represents a background or negative case, the terms true positive (TP), false positive (FP), true negative (TN), and false negative (FN) are commonly used. TP samples are those that are in the positive class and are correctly mapped as positive while FPs are not in the positive class but are incorrectly mapped as a positive case. TNs are in the negative class and are correctly mapped as negative while FNs are mapped as negative when they are actually positive. From this cross tabulation, it is possible to derive a variety of metrics. Precision represents the proportion of the samples that is correctly classified within the samples predicted to be positive and is equivalent to user’s accuracy (1 – commission error) for the positive class. Recall or sensitivity represents the proportion of the reference data for the positive class that is correctly classified and is equivalent to producer’s accuracy for that class. The F1 score, or Dice coefficient, is the harmonic mean of precision and recall, while specificity represents the proportion of negative reference samples that is correctly predicted and is thus equivalent to the producer’s accuracy for the negative class. The user’s accuracy for the negative class is termed the negative predictive value (NPV). 



True Positive Rate = fraction of cases 
predicted as true that were true

False Positive Rate = fraction of cases 
predicted as true that were false

25

ROC Curves

TPTN

FPFN

Decision 
Boundary

Probability

D
en

si
ty

Presenter Notes
Presentation Notes
Probabilistic predictions are commonly assessed using Receiver Operating Characteristic curves, or ROC curves. These curves make use of the true positive and false positive rates. True positives represent cases predicted as true that were actually true whereas false positives are cases predicted as true that were actually false. For example, if you were trying to predict which subjects had a certain disease, the true positive rate would be the fraction of the total number of subjects that were predicted as having the disease that actually have it. In contrast, the false positive rate would be the fraction of the total number of subjects that were predicted to have the disease but did not. 



Receiver Operating Characteristic
(ROC) Curve

Plots False Positive Rate and True 
Positive Rate at all 
decision/probability thresholds

Sensitivity = True Positive Rate 
(Recall)

Specificity = 1 – False Positive Rate
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ROC Curves

Presenter Notes
Presentation Notes
The ROC curve specifically plots sensitivity, which is equivalent to recall, against specificity. Sensitivity is the true positive rate (or recall) while specificity is 1 minus the false-positive rate. The rates depend on what probability threshold is used. So, instead of performing the assessment at one threshold, assessment is performed at all thresholds to plot a continuous curve.



Area Under Curve (AUC) = area 
under ROC Curve (0-1)

Larger suggest better models

Can be used to compare models

0.90-1 = excellent (A)
0.80-0.90 = good (B)
0.70-0.80 = fair (C)
0.60-0.70 = poor (D)
0.50-0.60 = fail (F)
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ROC Curves

Presenter Notes
Presentation Notes
Using the ROC curve, the AUC, or area under the ROC curve, can be calculated. As the name implies, this is simply the area under the ROC curve. This measure is scaled from 0-1, where 1 is the entire area of the ROC graph. This is generally interpreted like a grade scale, as described on the slide. So, larger values are better. An AUC of 0.5 indicates that your model is not doing better than simply taking a random guess. Since many algorithms generate class probabilities as a means to obtain the hard classification, ROC curves and the AUC measure are sometimes used to assess classification models. This is especially true for binary classifications. However, a multiclass version of the ROC curve can be generated, and a multiclass AUC can be calculated. 



Precision-Recall Curve

Graph precision vs. recall at different 
decision/probability thresholds

Can calculate area under the curve, 
similar to ROC
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P-R Curves

Presenter Notes
Presentation Notes
Assessments based on ROC curves do not take into account data imbalance, or the impact of a different number of samples in the two classes. The precision-recall (P-R) curve offers an alternative that takes this imbalance into account. Instead of using specificity, precision is graphed against recall or sensitivity. Similar to the ROC curve, the area under the P-R curve can be calculated as an assessment metric. 



Both are used for binary 
classification problems
ROC Curve can be flawed 

when highly imbalanced 
data are used 
ROC Curve only considers 

omission error
P-R Curve considers

omission and commission 
error for positive case
P-R Curve is better if data 

set contains moderate to 
large class imbalance
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ROC Curve vs. P-R Curve

Presenter Notes
Presentation Notes
Since ROC curves and the associated AUC ROC metric rely on recall and specificity, which are both insensitive to data imbalance, they can be misleading in cases where data imbalance should be taken into account, such as when the mapped classes take up very different proportions on the landscape. Specifically, reported metrics can be overly optimistic in cases of severe class imbalance and/or when the class of interest makes up a small percentage of the landscape. For example, if the goal is to map the locations of wetlands in a landscape where this class makes up less than 1% of the landscape, recall provides a quantification of the percentage of wetland samples that were correctly mapped as wetlands while specificity represents the percentage of not wetland samples that were correctly mapped. These two metrics and the associated ROC curve do not incorporate precision, which quantifies the percentage of the samples that were predicted to be wetlands that were actually wetlands. If a large percentage of the landscape is not wetlands, then the ROC curve and AUC ROC measure will not capture issues of FP cases, which may be an important criteria in determining the quality of the classification and the amount of manual labor necessary to improve the results (i.e., manually re-labelling the FP cases to not wetland). In such cases, a precision-recall (PR) curve may be more informative since it does incorporate precision, which is sensitive to class imbalance and quantifies the percentage of samples predicted to the positive class that were TPs. This curve plots sensitivity or recall to the x-axis and precision to the y-axis. Similar to ROC, it is possible to generate an area under the curve (AUC PR) metric to obtain a single summary statistic. 



Video: ROC Curves 
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Intersection over Union (IoU)

Use bounding box or pixels

Compare predicted extent 
or bounding box to 
reference extent or 
bounding box

Used for object detection

Used for computer vision

Average for multiple class = 
mean IoU (mIoU)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝐼𝐼
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝐼𝐼𝐼𝐼𝑜𝑜𝐼𝐼
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Presenter Notes
Presentation Notes
Expanding upon binary metrics, the computer vision, feature recognition, and deep learning research communities often calculate additional measures by comparing each validation feature to its predicted extent in the image based on overlapping bounding boxes or feature masks. This can be accomplished by comparing bounding boxes or classifications at the pixel-level. Intersection-over-union (IoU), also known as the Jaccard Index, represents the proportion or area that is shared of the combined area of the reference bounding box and predicted bounding box, or the area of intersection divided by the area of union of the two objects. A larger proportion of shared area or overlap suggests better performance. In the provided example, the green box represents the correct or reference bounding box for the bird house object. The red rectangle represents a prediction, and the dashed, black line represents the area of overlap. Mean IoU (mIoU) is the mean of IoU for all mapped classes. It is also possible to calculate a weighted mIOU that takes into account differences in class proportions or abundance. 



Mean Average Precision (mAP)

Define IoU
thresholds

Calculate PR Curves

AP = area under 
curve averaged at 
different thresholds

mAP = average AP 
for multiple classes
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Presenter Notes
Presentation Notes
The figure on this slide conceptualizes the average precision (AP) or mean average precision (mAP) metrics. For each individual feature or detected object, correct or incorrect predictions can be defined based on a minimum IoU measure that is deemed acceptable to generate a classification and associated metrics. For example, features correctly classified and with an areal intersection of more than 60% with the associated reference feature could be labelled as TPs while features with less than 60% overlap, or those incorrectly classified, could be labelled as FNs. PR curves can then be generated based on multiple IoU thresholds by comparing the predicted probabilities of samples labelled as TP, FN, and FP. The area under each of these PR curves can then be calculated and averaged to obtain a combined average precision (AP). It is also possible to calculate AP for multiple classes and average them to a single AP value, which is commonly termed mean average precision (mAP); however, the distinction between AP and mAP is often confused in the literature. Traditionally, IoU, mIoU, and AP, have been calculated using bounding boxes; however, it is possible to calculate them using pixel-level reference and predicted masks.



Loss Functions: Regression
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Measure of error

Used to assess learning 
during training

Goal is to update weights 
to minimize the measure

Use different measures 
for different situations

Can created custom 
measures or use multiple 
measures

Loss Functions
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Presenter Notes
Presentation Notes
As the DL algorithm learns from the training data and the optimization algorithm updates the weights/parameters, it must monitor some measure of performance in order to know whether the predictions of the training data are improving and learning is occurring. This is accomplished by monitoring a loss metric. Loss metrics are measures of error as opposed to measures of accuracy, and the goal is to reduce or minimize this metric via the learning processes. A variety of loss metrics have been proposed, and you can even define a custom metric for a specific problem. The appropriate loss metric partially depends on whether classification or regression is being performed.



Used for regression problems

Sum of squared residuals divided by the number of samples

RMSE without square root

Perfect value is 0

Default for regression

May be inappropriate if variable or error is not normally distributed

Mean Square Error (MSE)

Σ(y - ŷ)2/n
35

Presenter Notes
Presentation Notes
Mean square error (MSE) is commonly used to evaluate regression problems. However, this metric can be flawed if the variable being predicted and the associated errors or residuals are not normally distributed. MSE as a loss metric is equivalent to MSE as an assessment metric. 



Used for regression problems

Sum of absolute value of residuals 
divided by the number of samples

Perfect is 0

More robust to outliers than MSE

Mean Absolute Error (MAE)

Σ|y – ŷ|/n
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Presenter Notes
Presentation Notes
Mean absolute error (MAE) is more robust to outliers than MSE and is an alternative loss metric for regression problems. It is the average of the absolute values of the residuals. 



Used for regression problems

Valuable if predicting large range of values

Less punishment for large differences in large predicted values

Mean Square Logarithmic Error (MSLE)

√Σ(log(y + 1) – log(ŷ + 1)) 2/n
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Presenter Notes
Presentation Notes
The mean square logarithmic error can be used as a loss metric for regression, as opposed to MSE or MAE, and is particularly useful if the values of y or the variable being predicted vary greatly, such as over orders of magnitude. It decreases the impact or weight of errors when predicting large values. 



Loss Functions: Classification

38



Log Loss

Most common for binary classification problems

One class coded as 1, other coded as 0

Based on probability of samples occurring in each class

Binary Cross-Entropy (BCE)

39

= − 1
𝑁𝑁
∑𝑅𝑅=1𝑁𝑁 (𝑦𝑦𝐼𝐼𝑦𝑦𝑜𝑜𝑦𝑦 𝑝𝑝𝐼𝐼 ) + ( 1 − 𝑦𝑦𝐼𝐼 log(1 − 𝑝𝑝𝐼𝐼))

yi = Truth value ( 0 or 1), pi = Softmax probability for positive class, N = Number of samples 

Presenter Notes
Presentation Notes
Binary cross entropy is commonly used as a loss metric for binary classification problems. It specifically makes use of the predicted class probabilities of the positive case. When using binary cross entropy as a loss metric, the final layer should output one prediction, which represents the logit associated with the positive class probability. This logit can then be passed through a sigmoid activation function to obtain a probability. If your binary classification architecture generates two logits, one for the positive and one for the negative or background class, then you generally will not use binary cross entropy as a loss metric. In the equation, yi is the class label (1 or 0) and pi is the probability of the sample belonging to class 1 (i.e., the positive class). If the reference point belongs to class 1, then the second component of the equation drops out (1-1 = 0). If the class is 0 (i.e., the negative or background class), then the first part of the equation drops out. Since a negative is applied, this measure is minimized when features in class 1 have a high predicted probability of being in class 1 while features in class 0 have a low predicted probability of being in class 1. To obtain a single metric from all of the predictions and associated labels, results are summed then divided by the number of samples. 



Expands cross entropy for use with more than two 
classes

Take into account probability of belonging to each 
class

Generally, default option for multiclass problems

Cross-Entropy (CE)
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= − 1
𝑁𝑁
∑𝑅𝑅𝑁𝑁 ∑𝑗𝑗𝑀𝑀 𝑦𝑦𝐼𝐼𝑖𝑖𝑦𝑦𝑜𝑜𝑦𝑦(𝑝𝑝𝐼𝐼𝑖𝑖)

yij = Current sample for current class, pij = Softmax probability for current class,
N = Number of samples, M = Number of classes

Presenter Notes
Presentation Notes
Cross-entropy loss is a multiclass version of binary cross entropy. The process of calculating this loss metric is discussed in the following slides. 



Cross-Entropy (CE)
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Input Logits Probabilities
Model Softmax

Labels Loss

Presenter Notes
Presentation Notes
In order to calculate cross entropy loss, the model must output logits for all classes. These logits can then be converted to probabilities that sum to 1 using a softmax activation. The loss metric requires the predicted class probabilities and associated reference labels as input. 



Multiclass Cross-Entropy (CE)

42

𝐿𝐿𝐴𝐴𝑎𝑎𝐴𝐴𝑦𝑦 𝑃𝑃𝐴𝐴𝑜𝑜𝑎𝑎
0 .12
0 .05
0 .21
1 .45
0 .17

= − 1
𝑁𝑁
∑𝑅𝑅𝑁𝑁 ∑𝑗𝑗𝑀𝑀 𝑦𝑦𝐼𝐼𝑖𝑖𝑦𝑦𝑜𝑜𝑦𝑦(𝑝𝑝𝐼𝐼𝑖𝑖)

-(1)*log(0.45)
Sum for a all samples (i) and for all classes (j)

Divide by number of samples (N)

Presenter Notes
Presentation Notes
On this slide, I have provided an example output for a single sample. In this case, there are four classes being differentiated. The correct class will be one-hot encoded. Or, the correct class will be assigned a value of 1 and all other classes will be assigned a value of 0. For each sample, the log will be calculated for the reference class probability then multiplied by -1. Results will be summed for each sample (i) for all samples (N) for each class (j) for all classes (M). The sum will then be divided by the number of samples. 



Augmentation CE loss that incorporates different 
weights for each class

αj = class weightings

Weightings inversely proportional to class abundance

Can be useful in cases of class imbalance

Weighted CE
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= − 1
𝑁𝑁
∑𝑅𝑅𝑁𝑁 ∑𝑗𝑗𝑀𝑀 α𝑖𝑖𝑦𝑦𝐼𝐼𝑖𝑖𝑦𝑦𝑜𝑜𝑦𝑦(𝑝𝑝𝐼𝐼𝑖𝑖)

Presenter Notes
Presentation Notes
Cross entropy loss can be negatively impacted by class imbalance. Since the more abundant classes have more samples, they will have a larger impact on the loss calculation. This can cause the model to focus more on the abundant classes and less on the less abundant classes. This can result in poorer prediction accuracies for the less abundant class, overpredicting the abundance of the more abundant class, and/or underpredicting the abundance of the less abundant classes. One means to potentially combat this issue is to apply class weightings. It is common to weight the relative influence of each class based on the inverse of its abundance in the dataset. This can result in a more balanced influence between the classes and, potentially, improved model performance. 



Focal loss allows for the prioritization of or focus on difficult to 
classify samples over multiple iterations over the training data

Add γ (larger = more weight on difficult to classify samples)

Focal BCE/CE

Focal Dice

Focal Loss
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= − 1
𝑁𝑁
∑𝑅𝑅𝑁𝑁 ∑𝑗𝑗𝑀𝑀(1 − 𝑝𝑝𝐼𝐼𝑖𝑖)γ𝑦𝑦𝑜𝑜𝑦𝑦(𝑝𝑝𝐼𝐼𝑖𝑖)

Presenter Notes
Presentation Notes
Focal losses allow for the prioritization of difficult to classify samples. Over multiple iterations over the training data, the weight updates will be made such that the classification of difficult samples, or those with lower probabilities of membership to the correct class, are prioritized. There are focal versions of both cross entropy and Dice loss available. Dice will be discussed next. Larger values of γ will result in putting more weight on difficult training samples. 



Cross-entropy loss may be misleading when the area, number of pixels, 
or count of each class varies (data imbalance)

Dice is useful when classes are imbalanced (takes into account precision
and recall for each class)

Dice is equivalent to F1 Score

Dice Loss = 1 – Dice

Soft Dice uses probabilities as opposed to a threshold

Dice

2 ∗ TP
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)
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Presenter Notes
Presentation Notes
As an alterative to binary cross-entropy, 1 - Dice, which is equivalent 1 - F1-Score (discussed above), can be used as a loss metric for binary classification problems. Since both precision and recall are considered, this metric can be useful when the classes are imbalanced; however, the gradients are generally less consistent, so updating weights using backpropagation can be more difficult. A soft Dice metric can be calculated by using the class probabilities as opposed to the hard classifications. It is also possible to use Dice for multiclass problems based on an average per class Dice. 
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Dice

Presenter Notes
Presentation Notes
As noted in the prior slide, the Dice coefficient is equivalent to the F1 Score. It is calculated as 2 times the product of precision and recall divided by the sum of precision and recall. 



Macro-Averaging

Micro-Averaging
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Multiclass Dice and Dice Loss

Class TP FP FN Precision Recall F1-Score/
Dice

A 120 17 41 0.88 0.75 0.81

B 96 12 17 0.89 0.85 0.87

C 111 32 21 0.78 0.84 0.81

Recall = TP
TP+FN

Precision = TP
TP+FP

Dice = 2 X Precision X Recall
Precision+Recall

Dice (Macro) = 0,81+0.87+0.81
3l

= 0.83 Dice (Macro) = 2 ∗(120+96+111)
120+96+111+17+12+32 +
(120+96+111+41+17+21)

= 0.83

https://stephenallwright.com/micro-vs-macro-f1-score/

Dice = 2 X 2 𝑋𝑋 𝑇𝑇𝑇𝑇
TP+𝐹𝐹𝑇𝑇 +(𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁)

Presenter Notes
Presentation Notes
For multiclass problems and in order to obtain a single metric from multiple class-level Dice or F1-scores, some means of aggregating the values must be applied. Macro-averaging works by calculating the metric for each class then taking the average. When using macro-averaging, each class has equal weight in the average. If classes are highly imbalanced, this may be the best choice as all classes will be treated equally in the loss calculations. However, when an aggregated Dice is used as an assessment metric, this can result in misleading assessments since the relative abundance of the classes is not maintained. In contrast to macro-averaging, micro-averaging counts the total number of TP, FP, and FN samples across all classes then sums these counts before calculating the aggregated metric. Since each class may have a different number of associated samples, classes with more samples will have a larger weight in the calculation. Micro-averaging may not be appropriate if classes are highly imbalanced when 1 – Dice is used as a loss metric since the more abundant classes would have a higher impact on the loss. When using aggregated Dice or F1-Score as an assessment metric, the micro-averaging method may be more appropriate since the relative proportions of the classes are maintained. 

https://stephenallwright.com/micro-vs-macro-f1-score/


Similar to Dice

Provide different weightings for FNs (α) and FPs (β)

Or, provide different weightings for recall and precision

Tversky Loss

1 – TP
TP+αFN+βFP
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Presenter Notes
Presentation Notes
The Tversky loss is an augmentation of 1 - Dice loss and allows for different weightings to be applied to false negatives (FNs) and false positives (FPs). Or, different weightings can be applied to recall and precision. The key here is that the user can prioritize different types of error during model training. Or, omission and commission errors do not need to be equally weighted. The relative weightings of FN and FP outcomes are controlled by the α and β terms. 



Provide different weightings for FNs (α) and FPs (β)

Or, provide different weightings for recall and precision

Focal loss allows for the prioritization of or focus on difficult to 
classify samples over multiple iterations over the training data (γ)

49

Focal Tversky Loss

(1 – 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝛼𝛼𝐹𝐹𝑁𝑁+𝛽𝛽𝐹𝐹𝑇𝑇

)γ

Presenter Notes
Presentation Notes
Focal Tverksy loss adds a γ parameter which can be used to control the relative impact of difficult to classify examples. Larger values of γ will put a larger weight on difficult to classify samples. 



Another way to focus on difficult to classify 
samples

Only considers top K number of samples 
contributing to the loss

Top K BCE/CE

Top K Dice

Top K Loss

50

Presenter Notes
Presentation Notes
Another means to weight difficult to classify samples is to only use the difficult to classify samples in the calculation of the loss. In other words, the K number of samples that contribute most to the loss will be used to guide the weight updates. All other samples will be ignored. Similar to focal loss, there are Top K versions of cross entropy and 1 – Dice loss. 



Combining Metrics

 Loss = BCE + wDice

 Loss = Focal BCE + wDice

 Loss = Top K + wDice
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Presenter Notes
Presentation Notes
It is also possible to combine loss metrics into a single measure to be minimized during training. For example, for binary classification problems, the total loss to be minimized could be the sum of the binary cross-entropy and 1 - Dice losses. It is also possible to apply weightings to each metric to adjust the relative influences. This slide provides some examples of combined loss options. 



Maxwell, Warner, and Guillen

Maxwell, A.E., T.A. Warner, and L.A. Guillen, 2021. 
Accuracy Assessment in Convolutional Neural Network-
Based Deep Learning Remote Sensing Studies – Part 1: 
Literature Review, Remote Sensing, 13(13): 1-27.
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Presenter Notes
Presentation Notes
If you are interested in accuracy assessment methods for CNN-based DL in remote sensing, we recommend this two-part paper series. The citation for the second component is provided on the next slide. Both are freely available and open-source. 



Maxwell, Warner, and Guillen

Maxwell, A.E., T.A. Warner, and L.A. Guillen, 2021. 
Accuracy Assessment in Convolutional Neural Network-
Based Deep Learning Remote Sensing Studies – Part 2: 
Recommendations and Best Practices, Remote Sensing, 
13(13): 1-22.  https://doi.org/10.3390/rs13132591 53



Ma et al. (2021)

Ma J, Chen J, Ng M, Huang R, Li Y, Li C, Yang 
X, Martel AL. Loss odyssey in medical image 
segmentation. Med Image Anal. 2021 
Jul;71:102035. doi: 
10.1016/j.media.2021.102035. Epub 2021 Mar 
19. PMID: 33813286.https://github.com/JunMa11/SegLoss 54

Presenter Notes
Presentation Notes
For more information on loss metrics associated with classification and image segmentation problems, we recommend Ma et al. (2021). Even though this paper focuses on medical image analysis, its findings are applicable to geospatial science. 

https://github.com/JunMa11/SegLoss


This is the end of this lecture module. 

Please return to the West Virginia View 
Webpage for additional content. 

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful. 
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