Geospatial Deep Learning
Improving Models

AmericaView

Empowering Earth Observation Education
AmericaView.org - Est. 2003

Presenter Notes
Presentation Notes
In this module, we will explore methods for potentially improving model performance by drawing from recent studies and best practices.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

»
o :
Science, Art, Tradecraft

Presenter Notes
Presentation Notes
Deep learning is science, art, and a tradecraft. Analyst and developers often need to work with specific datasets, code libraries, and problem types in order to build up an intuition as to how best to prepare data, define architectures, and configure the learning process. Building up these skillsets often requires many hours of hands-on experience working on a variety of projects.

For deep learning specifically, how data are prepared and how the training process is configured can have a big impact on the accuracy, transferability, and generalizability of the resulting model.

If your goal is to become a well rounded geospatial deep learning practitioner, it will take time to develop this skillset, so don’t get discouraged.

g o
Picking a Model

e <*New models are being
Architectures developed

e Unet [paper] [docs]

“*Complex models may be hard
to train with small sample sizes

® Unet++ [paper] [docs]

® MAnet [paper] [docs]

® Linknet [paper] [docs]

® FPN [paper] [docs]

® PSPNet [paper] [docs]

e PAN [paper] [docs]

® DeeplabV3 [paper] [docs]
® DeeplLabV3+ [paper] [docs]

Presenter Notes
Presentation Notes
One of the first decisions required is which algorithm or architecture to use. This will be at least partially dictated by the problem type. For example, a UNet is appropriate for semantic segmentation but not object detection.

Also, since deep learning is a rapidly advancing field the most state-of-the art models will change with time. Unfortunately, although more complex models may be able to model more complex patterns in data and, as a result, yield more accurate predictions, they may also require more training data in order to avoid overfitting.

Generally, researchers and practitioners have found that simpler models may perform well if they are parameterized well, provided quality training examples, and trained using appropriate routines.

For example, if I am undertaking a semantic segmentation task, I often start with a UNet and move on to a more complex model, such as UNet++ or DeepLabv3+, only if the UNet does not perform well. I also sometimes explore different backbones (e.g., ResNet-101 vs. ResNet-34) for use with the same architecture. Note that larger backbones generally require larger training datasets to avoid overfitting. We will further discuss some of these considerations in the semantic segmentation modules.

Fortunately, using libraries such as Segmentation Tools, which will also be explored in a later module, allows for a variety of algorithms to be applied with little alteration to the code.

https://github.com/qubvel/segmentation_models.pytorch#models

g O
Choosing a Loss

@ JunMa11 Add Baidu Net Disk downloading link

BB losses_pytorch Update boundary_loss.py

B test Add Baidu Net Disk downloading link

[READMEmd Update README.md

README.md

Loss functions for image segmentation

IoU/

d Smooth
SS Jaccar extension

Lovasz

Exp Exp Harmonic Dice
" & & mean 2 — Dice
Distance map L
penalized Log 08

WCE DPCE

Weight class Distance map
weighted

Dice
- Weight Two side

Multi-
FP & FN class
BN ..., op

at+p=1

Cross Entropy (CE)

Hard Down-weight

weighted
mining easy examples

TopK loss

Focal loss Weight

FP & FN

Metric

3a647ac 8 days ago 9 104 commits

3 months ago
8 days ago

2 months ago

Boundary Loss

One side

distance map

HD Loss

FocalTversky

Distribution-based Loss

Region-based Loss

Boundary-based Loss

“*Problem type
»»Class imbalance

“*Class weights

Presenter Notes
Presentation Notes
Choosing a loss metric is very important. As discussed in the prior modules, the appropriate loss metric will partially depend on the problem type. For example, binary cross-entropy is appropriate for a two-class problem where a single logit is returned whereas cross-entropy is used when two or more logits are returned. Mean square error is appropriate for regression whereas Dice loss is used for classification.

Another key consideration is the impact of data imbalance. For example, cross-entropy loss often performs poorly when classes are imbalanced, or when there are large differences in the number of training samples per class. In such cases, it is often appropriate to apply class weightings to obtain a weighted cross-entropy loss. For example, some practitioners will weight classes based on the inverse of their abundance in the training set. You could also use Dice loss, which is more robust to data imbalance.

As discussed in prior modules, you can also apply Top K or focal losses to focus on predicting difficult samples. You can even combine multiple loss metrics. For very specific use cases, you can even define custom loss measures.

g O
Data Balancing

“*Synthetic samples

: : Precision Recall
for minority class 2% TP/(TP + FP) * TP/(TP + FN)
2»Subset of maj()rity P \ Precision Recall
class TP/(TP + FP) +TP/(TP + FN)

“*CE with

“*Dice/Tversky loss

Presenter Notes
Presentation Notes
There are also methods available to balance datasets. For example, you can create more, synthetic examples of the minority classes, use minority class samples more than once in each training epoch, use only a subset of the majority class samples, apply class weights in the loss metric calculation, or apply a loss metric that is robust to class imbalance, such as Dice loss.

Dealing with imbalanced data is a complex problem for both machine learning and deep learning and is still an active area of research.

O
O
Augmenting Model Architecture

“*Dropouts

(Rows, Columns, Features)

s*» Batch Normalization
*Backbone used
< Activation Functions W Wi WSS

> Max Paoling Batch Normalization + Output ClassProbabilitics

’:’ ReLU to Leaky ReLU + Flatten “ Activiation

-+ Sigmoid or Softmax

<*Number of hidden layers (3,128, 128) > (64, 128, 128,) > (128, 64,
. 64) > (256, 32, 32) > (512, 16, 16)
“*Number of feature maps

<+ Etc.

Presenter Notes
Presentation Notes
It is also possible to augment standard architectures by adding dropouts and/or batch normalization (generally, batch normalization is recommended as opposed to using dropouts). You can also change the activation function. For example, leaky or parameterized ReLU could be used as opposed to ReLU.

You can also change the number of hidden layers and number of kernels and resulting feature maps produced per layer within convolutional neural network architectures. We will discuss convolutional neural networks soon.

One complexity with deep learning is that there are lots of hyperparameters and architectural configurations that can be manipulated, making it difficult to systematically test the influence of or potential benefit of setting and alterations.

0
o
Leaky Rectified Linear Unit (Leaky ReLU)

ozoNonlinear oo f IHpUt > threShOId:

: n In
“*More computationall return Input

efficient than sigmoi Else: o
or tanh | return Coefficient X Input

“*Widely used

**Does not reach

gradient of zero like
RelU

“*Fix dying ReLLU

nn.LeakyReLU(negative slope=0.1, inplace=True)

7

Presenter Notes
Presentation Notes
In order to combat the “dying ReLU” issue, leaky ReLU maintains a gradient for negative activations as opposed to converting them to 0 by applying a slope term. Thus, the gradient does not become zero, but changes gradually.

I am generally a fan of using Leaky ReLU. This is a simple change to make.

g o
Dropouts

’:’Mlnlmlze Overjnlttlng Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
by “dropping out” or
ignoring neurons in 4/&\\//&
the network ". ‘\v'vl‘ ¢
#Often b q O NI I
+Often between 0.5 an "A§"‘ 20N . N
g
< Can take longer for — ./ \. o
model to stabilize or N.4] [3.4 P P e
converge '

nn.Dropout(p=.3)

Presenter Notes
Presentation Notes
Another option is to incorporate dropouts. This consists of randomly dropping out or ignoring some neurons and their associated weights during specific weight/parameter updates.

Dropping this information can reduce the reliance and fit of the model to the training data to potentially improve generalization.

> O
Batch Normalization

“*Does not allow activations to get really small or

large in comparison to other activations
S P z = (x — mean)/std

»Decreases the influence of large
weights/stabilizes training process

“*Reduces overtfitting
“*Can decrease training time
“*Can use a larger learning rate

“*Qccurs on a batch-by-batch basis

nn.BatchNormld(hiddenSizes[0])

Presenter Notes
Presentation Notes
Dropouts have now been replaced by batch normalization in most cases. Again, I feel that batch normalization is highly effective and should be considered a standard component of neural network architectures. One drawback is that including batch normalization will increase the number of trainable parameters in the model.

o .
P Data Augmentation

Presenter Notes
Presentation Notes
As mentioned in prior modules, data augmentation is often used to combat overfitting and improve model generalization and transferability. When defining data transformations, you have control over what transformations to consider (e.g., flips, rotations, contrast changes, and blurring), the probability of applying the transformation, and the degree of alteration (e.g., maximum allowed changes to contrast or blur).

You may want to experiment with different augmentation techniques to assess how model performance is impacted.

In later modules, we will discuss data augmentations in the context of scene labeling using convolutional neural networks and pixel-level classification using semantic segmentation methods.

Transfer Learning

info@cocodataset org

Common Objects in Context People Dataset- Tasks- Evaluate-

IMAAGE

Panoptic, and

What is COCO? Sponsors

Fawga

B® Microsoft

Object segmentation or
Recognition in context ir nc fﬂCEbOOI(

Superpixel stuff segmentation

330K images (>200K labeled) ~ . .
1.5 million object instances e) @ Mlghty Ai

80 object categories

import segmentation_models_pytorch as smp

model = smp.Unet(
encoder_name="resnet34",
encoder_weights="imagenet",
in_channels=1,
classes=3,

11

Presenter Notes
Presentation Notes
Transfer learning can be applied to make use of weights/parameters learned from larger datasets, such as ImageNet and COCO. Later modules will show how to apply transfer learning.

Generally, transfer learning has been shown to improve model performance, even if the input data and problem are different than the original use case. For example, ImageNet has been used to initiate models for labeling aerial images, even though the set includes no aerial images and different classes are differentiated. The idea here is that all images have some characteristic features, such as edges, tones, and textures, so initiating from pre-trained weights/parameters is better using a random initiation.

http://www.image-net.org/
https://cocodataset.org/#home

Transfer Learning

TEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 5, MAY 2019

Less is More when Applying Transfer Learning

to Multi-Spectral Data CoinNet: Copy Initialization Network for

Multispectral Imagery Semantic Segmentation

Yuvraj Sharma' and Robert Ross?

! Adapt Centre, Technological University Dublin, Ireland

d18129636@mytudublin. com

2 Adapt Centre, Technological University Dublin, Treland robert.ross@tudublin.ie

Abstract. Transfer Learning is widely recognized as providing incred-
ible benefits to many image processing tasks. But not all problems in
the computer vision field are driven by traditional Red, Green, and Blue
(RGB) imagery as tend to be assumed by most large pre-trained mod-
els for Transfer Learning. Satellite based remote sensing applications for
cxample typically use multispectral bands of light. While transferring
RGB features to this non-RGB domain has been shown to generally
give higher accuracy than training from scratch, the question remains
whether a more suitable fine tuned method can be found. Given this
challenge, this paper presents a study in multispectral image analysis
using multiple methaods to achieve feature transfer. Specifically, we train
and compare two pre-trained models based on the Resnet50 architec-
ture and apply them to a multi-spectral image processing task. The key
difference between the two models is that one was pre-trained in a con-
ventional way against RGB data, while the other was trained against a
single band greyscale variant, of the same data. Our results demonstrate
an improved performance on the greyscale pre-trained model relative to
the more traditional RGB model.

Keywords: Deep learning - Transfer learning - Tmage Analysis - Resnet
- CNN - Multispectral images - ImageNet - Satellite imagery - EuroSat.

Bin Pan™, Zhenwei Shi*, Xia Xu, Tianyang Shi*, Ning Zhang, and Xinzhong Zhu

Abstract— Remote sensing imagery semantic segmentation
refers to assigning a label to every pixel. Recently, deep con-
volutional neural networks (CNNs)-based methods have pre-
sented an impressive performance in this task. Due to the
lack of sufficient labeled remote sensing images, researchers
usually utilized transfer learning (TL) strategies to fine tune
networks which were pretrained in huge RGB-scene data sets.
Unfortunately, this manner may not work if the target images
are multispectral/hyperspectral. The basic assumption of TL
is that the low-level features extracted by the former layers
are similar in most data sets, hence users only require to
train the parameters in the last layers that are specific to
different tasks. However, if one should use a pretrained deep
model in RGB data for multispectral /hyperspectral imagery
semantic segmentation, the structure of the input layer has to
be adjusted. In this case, the first convolutional layer has to be
trained using the multispectral /hyperspectral data sets which are
much smaller. Apparently, the feature representation ability of
the first convolutional layer will decrease and it may further
harm the following layers. In this letter, we propose a new
deep learning model, COpy INitialization Network (CoinNet),
for multispectral imagery semantic segmentation. The major
advantage of CoinNet is that it can make full use of the initial
parameters in the pretrained network’s first convolutional layer.
Comparison experiments on a challenging multispectral data set
have demonstrated the effectiveness of the proposed improve-
ment. The demo and a trained network will be published in our
homepage.

Index Terms— CoinNet, deep con i I network,
segmentation, transfer learning (TL).

I. INTRODUCTION

EMANTIC segmentation is a hot topic in computer

version, especially after the breakthrough in deep con-
volutional networks [1]. In 2015 the CNN model is
extended 1o a fully convolutional form (FCN) [2] which
has further improved the performance. In the field of
remole sensing imagery processing, semantic segmenta-
tion (also known as pixel-based classification in the past)
has presented great significance not only in academic
research but also in many applications [3]-[5]. For exam-
ple, semantic segmentation is the basis forest-cover estima-
tion, land-use investigation, and urban planning. Traditional
manual labeling manner is quite time-consuming, therefore
it is necessary (o develop automatic semantic segmentation
methods.

Compared with common RGB natural scene images, some
remote sensing sensors can provide images with many con-
tinuous bands, called multispectral /hyperspectral imagery
(to avoid ambiguity, we assume multispectral imagery has
more than three channels). The extra spectral information will
definitely contribute to the semantic segmentation problem.
Thanks to the excellent performance of FCN methods [2], [6],
researchers have begun (o study the semantic segmentation
of multispectral /hyperspectral remote sensing imagery based
on FCN [7]-[10]. Generally, these methods adopted the same
idea: transfer learning (TL) [11]. They used networks that

Presenter Notes
Presentation Notes
One complexity in implementing transfer learning is that most large datasets on which pre-trained weights are based, such as ImageNet and COCO, are RGB or three-band data. However, in remote sensing and geospatial science, we are often interested in extracting information from other data types, such as digital terrain data or scanned thematic maps. Also, our data may have a larger number of bands, as in the case of multispectral imagery. Since these additional bands likely contain information that may improve the differentiation of the classes, we generally do not want to throw this information out. Other disciplines have similar problems, such as the analysis of medical imagery.

One option is to initiate the model using the pre-trained weights and provide three input bands, even if they are not RGB data. In many cases, this has been shown to provide more accurate results that initiating the model using random weights, especially if all weights are unfrozen for training.

If more than three bands are used, methods have been developed to augment the available weights. Two example papers that explore this topic are referenced on this slide. Note that this is still an active area of research.

Another option is to augment the model architecture to accept more bands. You may also need to augment the model architecture to match the number of differentiated classes.

Schedulers

STEPLR

ASS torch.optim.lr_scheduler.SteplLR(optimizer, step_size, gamma=0.1, last_epoch=-1, ‘:‘ Au g m e nt hyp e rp a r a m et e r S

verbose=False)

Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen
simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial Ir as Ir. “‘

4

Parameters

& optimizer (Optimizer) — Wrapped optimizer.

e T s “*Augment training set
“+Shuffle data

Assuming optimizer uses lr = 0.05 for all groups

1lr = 0.05 if epoch < 30 “‘
1r = 0.005 if 30 <= epoch < 60 <
1lr = 0.0005 1if 60 <= epoch < 90

scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

2 F, ar]y stopping

validate(...)
scheduler.step()

¢ last_epoch (int) - The index of last epoch. Default: -1.

verbose (bool) - If True, prints a message to stdout for each update. Default: False.

Example

13

Presenter Notes
Presentation Notes
Schedulers allow for altering the learning process between batches or epochs, or iterations over the training data.

For example, schedulers can be used to augment hyperparameters, change the learning rate, augment the training dataset, shuffle the training data, freeze or unfreeze weights, or apply early stopping. Early stopping is used to stop the training process before the final epoch is reached if the model is no longer improving.

As an example, let’s say you have a binary classification problem in which the background class is far more abundant than the class of interest. Or, your dataset is imbalanced. However, there is a lot of variability in the background class, so you would like to provide a wide variety of background examples. One option would be to schedule the dataset and data loader to update after each epoch to select different subsets of the background set. This would allow for the model to see a different random subset of the background training samples in each epoch.

Note that PyTorch has methods available for applying schedulers. These are generally defined then applied in the training loop. The example on the slide allows for decreasing the learning rate.

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html

Learning Rate Schedulers

Presenter Notes
Presentation Notes
Augmenting the learning rate during training has generally been shown to improve the model performance. It can also allow for faster training. I am specifically a fan of cyclic learning rates, where the learning rate oscillates between a low and high value.

The link on this slide provides example implementations of different learning rate schedulers.

https://www.kaggle.com/code/isbhargav/guide-to-pytorch-learning-rate-scheduling

&
Super-Convergence

*» Faster convergence

Super-Convergence: Very Fast Training of Neural

’:’ One 1eaI‘IliIlg I'ate CYCle Networks Using Large Learning Rates

< Large maximum learning rate

U.S. Naval Research Laboratory, Code 5514
4555 Overlook Ave., SW., Washington, D.C. 20375
leslie.smith@nrl.navy.mil

Nicholay Topin

“»Large learning rate regularizes
training

ntopinl@umbc.edu

Abstract

In this paper, we describe a phenomenon, which we named * ‘super-cony ergence”’,
where neural networks can be trained an order of magnitude f:
standard training methods. The existence of super-convergence is relevant to
understanding why deep networks generalize well. One of ‘the key elements of
super-convergence is training with one learning rate cycle and a l: arge m aximum
learning rate. A primary insight that allows super-convergence training is that large
18'1.[‘1‘11]']0 rates Iegularlze the training, hence requmnn a reduction of all other forms
i regularization balance. We also
Free optimization method to compute an
: ot the optlmal learning r'1te Experiments demomtr'lte super-convergence
r-10/100, MNIST and Imagenet datasets, and resnet, e-resnet, densenet,
and inception architectures. In addition, we show that super-convergence provides
a greater boost in performance relative to standard training when the amount of
labeled training data is limited. The architectures to replicate this work will be
made available upon publication.

15

Presenter Notes
Presentation Notes
The paper referenced here introduced the concept of super-convergence. The idea hear is to oscillate the learning rate and use a fairly large learning rate as the upper bound. This large learning rate can have the effect of regularizing the model and improving the model generalization. This process can also allow for achieving better performance with a fewer number of training epochs.

I highly recommend reading through this paper. Note that super-convergence may not be possible for all models or problems.

earning Rate Finder

nter Conference on Applications of Computer

Cyclical Learning Rates for Training Neural Networks

Leslie N. Smith
U.S. Naval Research Laboratory, Code S
4555 Overlook Ave., SW., Washington, D.C.

lesli mith@nrl.navy.mil

Abstract

1t is known that the learning rate is the most important
hyper-parameter to tune for training deep neural networks.
This paper describes a new method for setting the learning
rate, named cyclical learning rates, which practically elim-
inates the need to experimentally find the best values and
schedule for the global learning rates. Instead of mono-
tonically decreasing the learning rate, this method lets the
learning rate ally vary between reasonable bound-
ary values. Training with cyclical learning rates instead

ced values achieves improved cla ation accure

without a need to tune and often in fewer iterations. This
paper also describes a simple way to estimate “reasonable
bounds” — linearly increasing the learning rate of the net-
work for a few epochs. In addition, cyclical learning rates
are demonstrated on the CIFAR-10 and CIFAR-100 datase
with ResNets, Stochastic Depth networks, and DenseNets,
and the ImageNet dataset with the AlexNet and GoogLeNet
architectures. These are practical tools for everyone who
trains neural networks.

CIFAR-10

nomenon that a varying learning rate during training is ben-
i to let the global learning

fixed value. In addition, this cyclical learning rate

_R) method practically eliminates the need to tune the

learning rate yet achieve near optimal classification accu-

racy. Furthermore, unlike adaptive learning rates, the CLR
s require essentially no a onal computation.

PyTorch learning rate finder

pyoi NGB

) ci-build |passing codecov |85% |

A PyTorch implementation of the learning rate range test detailed in Cyclical Learning Rates for Training Neural

Networks by Leslie N. Smith and the tweaked version used by fastai.

The learning rate range test is a test that provides valuable information about the optimal learning rate. During a pre-
training run, the learning rate is increased linearly or exponentially between two boundaries. The low initial learning
rate allows the network to start converging and as the learning rate is increased it will eventually be too large and the
network will diverge.

Typically, a good static learning rate can be found half-way on the descending loss curve. In the plot below that would

be

For cyclical learning rates (also detailed in Leslie Smith's paper) where the learning rate is cycled between two
boundaries , the author advises the point at which the loss starts descending and the point at
vhich the loss stops descending or becomes ragged for and respectively. In the plot below,

and

16

Presenter Notes
Presentation Notes
It is generally suggested that the learning rate is the most important hyperparameter in terms of model performance and the number of training epochs required to obtain suitable results. Thus, selecting a learning rate is key.

Smith (2017) introduced a method for selecting an optimal learning rate or range of learning rates. This methods has been implemented in PyTorch and the arcgis.learn module. It is generally very fast to implement. This slide provides a link to the GitHub repo for a PyTorch implementation of this method.

If you are interested in the specifics of this method, please read through the paper reference on the slide.

https://github.com/davidtvs/pytorch-lr-finder

»
O . .
Gradient Accumulation

s Useful with small batch sizes

<*Do not update gradients after every batch

Gradient Accumulation in PyTorch

Increasing batch size to overcome memory constraints

((batch_idx + 1) % accum_iter == 0) (batch_idx + 1 == len(trainDL)):
optimizer.step()
optimizer.zero grad() 17

Presenter Notes
Presentation Notes
When training complex models, it is generally necessary to use a small batch size so as not to run out of memory. However, small batch sizes can yield noisy weight/parameter updates. In order to combat this issue, the gradients can be accumulated over multiple batches before the optimizer is applied and the weights/parameters are updated. This is known as gradient accumulation.

For example, you could keep track of the gradients and only apply weight updates and optimization after every 10 batches. If the batch sizes is 10 also, this means that 100 samples would be predicted before weight updates are applied.

This can be set up in PyTorch by augmenting the training loop. See the linked blog for a more in-depth explanation and examples.

https://kozodoi.me/python/deep%20learning/pytorch/tutorial/2021/02/19/gradient-accumulation.html

€ . . .
Semi-Supervised Learning

“*Combat small training
set/overfitting

s Learn from labeled and unlabeled
data

N/
0’0

s Active area of research

18

Presenter Notes
Presentation Notes
There are a variety of methods that are being explored to allow algorithms to learn from both labeled and unlabeled data, which is termed semi-supervised learning. We will not discuss semi-supervised learning in this class. However, I anticipate that these methods will continue to be developed and may result in substantial improvements in model performance and applicability.

It is generally easier to find input data than it is to find input data that also have associated labels. So, methods that allow for incorporating unlabeled data into the training process have a high degree of practical value.

g O
Multiple GPUs

“*Use larger batch size
“*Decrease training time

“Train on larger datasets

model = nn.DataParallel(model)

https://www.run.ai/guides/multi-gpu/pytorch- https://lambdalabs.com/
multi-gpu-4-techniques-explained

19

Presenter Notes
Presentation Notes
It is possible to train modules using multiple GPUs, either within the same machine or spread across multiple machines. You can even train models using GPU clusters. This can allow for faster training and larger batch sizes.

In PyTorch, this can be accomplished using nn.DataParallel().

https://www.run.ai/guides/multi-gpu/pytorch-multi-gpu-4-techniques-explained
https://lambdalabs.com/

0
o
Reproducibility and Replicability

»Reproducibility relates to “computational
reproducibility—obtaining consistent results using the
same input data, computational methods, and conditions
of analysis.”

< Replicability relates to “whether applying the same
metlllods to the same scientific question produces similar
results”

20

Presenter Notes
Presentation Notes
This slide explains the difference between reproducibility and replicability. To increase the value of scientific research, we should strive for enhanced reproducibility and replicability. One component of this is making use of open-source software tools and making code and data readily available for use by others.

O
QO

Reproducibility and Replicability

remote sensing @:@

Communication

Enhancing Reproducibility and Replicability in Remote
Sensing Deep Learning Research and Practice

Aaron E. Maxwell **(, Michelle S. Bester ! and Christopher A. Ramezan 2

Department of Geology and Geography, West Virginia University, Morgantown, WV 26505, USA
John Chambers College of Business and Economics, West Virginia University, Morgantown, WV 26505, USA
Correspondence: aaron.maxwell@mail wvu.edu

Abstract: Many issues can reduce the reproducibility and replicability of deep learning (DL) research
and application in remote sensing, including the complexity and customizability of architectures,
variable model training and assessment processes and practice, inability to fully control random
components of the modeling workflow, data leakage, computational demands, and the inherent
nature of the process, which is complex, difficult to perform systematically, and challenging to fully
document. This communication discusses key issues associated with convolutional neural network
(CNN)-based DL in remote sensing for undertaking semantic segmentation, object detection, and
instance segmentation tasks and offers suggestions for best practices for enhancing reproducibility
and replicability and the subsequent utility of research results, proposed workflows, and generated
data. We also highlight lingering issues and challenges facing researchers as they attempt to improve
the reproducibility and replicability of their experiments.

Keywords: deep learning; replicability; reproducibility; semantic segmentation; object detection

Presenter Notes
Presentation Notes
This paper, which is free and open-access, discusses issues of reproducibility and replicability in remote sensing deep learning research and practice.

0
O
Reproducibility in PyTorch

set seed2(seed=2019):

random.seed(seed)

np.random.seed(seed)

torch.manual seed(seed)
torch.random.manual seed(seed)
torch.cuda.manual seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=False

N
N
N
N

22

Presenter Notes
Presentation Notes
Due to the complexity of neural network architectures and their implementations, obtaining reproducible results, where the same model can be obtained repeatedly, is not simple. The paper referenced on this slide provides code that sets multiple random seeds and other setting that should allow for reproducible results using PyTorch.

Please return to the West Virginia View
Webpage for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Science, Art, Tradecraft
	Picking a Model
	Choosing a Loss Metric
	Data Balancing
	Augmenting Model Architecture
	Leaky Rectified Linear Unit (Leaky ReLU)
	Dropouts
	Batch Normalization
	Data Augmentation
	Transfer Learning
	Transfer Learning
	Schedulers
	Learning Rate Schedulers
	Super-Convergence
	Learning Rate Finder
	Gradient Accumulation
	Semi-Supervised Learning
	Multiple GPUs
	Reproducibility and Replicability
	Reproducibility and Replicability
	Reproducibility in PyTorch
	Slide Number 23

