
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_
Hemisphere_transparent_background.png#filelinks

Improving Models
Geospatial Deep Learning

Presenter Notes
Presentation Notes
In this module, we will explore methods for potentially improving model performance by drawing from recent studies and best practices.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Science, Art, Tradecraft

2

Presenter Notes
Presentation Notes
Deep learning is science, art, and a tradecraft. Analyst and developers often need to work with specific datasets, code libraries, and problem types in order to build up an intuition as to how best to prepare data, define architectures, and configure the learning process. Building up these skillsets often requires many hours of hands-on experience working on a variety of projects. For deep learning specifically, how data are prepared and how the training process is configured can have a big impact on the accuracy, transferability, and generalizability of the resulting model. If your goal is to become a well rounded geospatial deep learning practitioner, it will take time to develop this skillset, so don’t get discouraged.

Picking a Model

New models are being
developed

Complex models may be hard
to train with small sample sizes

https://github.com/qubvel/segmentation_models.pytorch#models

3

Presenter Notes
Presentation Notes
One of the first decisions required is which algorithm or architecture to use. This will be at least partially dictated by the problem type. For example, a UNet is appropriate for semantic segmentation but not object detection. Also, since deep learning is a rapidly advancing field the most state-of-the art models will change with time. Unfortunately, although more complex models may be able to model more complex patterns in data and, as a result, yield more accurate predictions, they may also require more training data in order to avoid overfitting. Generally, researchers and practitioners have found that simpler models may perform well if they are parameterized well, provided quality training examples, and trained using appropriate routines. For example, if I am undertaking a semantic segmentation task, I often start with a UNet and move on to a more complex model, such as UNet++ or DeepLabv3+, only if the UNet does not perform well. I also sometimes explore different backbones (e.g., ResNet-101 vs. ResNet-34) for use with the same architecture. Note that larger backbones generally require larger training datasets to avoid overfitting. We will further discuss some of these considerations in the semantic segmentation modules. Fortunately, using libraries such as Segmentation Tools, which will also be explored in a later module, allows for a variety of algorithms to be applied with little alteration to the code.

https://github.com/qubvel/segmentation_models.pytorch#models

Choosing a Loss Metric

Problem type

Class imbalance

Class weights

Ma J, Chen J, Ng M, Huang R, Li Y, Li C, Yang X, Martel AL. Loss odyssey in medical
image segmentation. Med Image Anal. 2021 Jul;71:102035. doi:
10.1016/j.media.2021.102035. Epub 2021 Mar 19. PMID: 33813286.

4

Presenter Notes
Presentation Notes
Choosing a loss metric is very important. As discussed in the prior modules, the appropriate loss metric will partially depend on the problem type. For example, binary cross-entropy is appropriate for a two-class problem where a single logit is returned whereas cross-entropy is used when two or more logits are returned. Mean square error is appropriate for regression whereas Dice loss is used for classification. Another key consideration is the impact of data imbalance. For example, cross-entropy loss often performs poorly when classes are imbalanced, or when there are large differences in the number of training samples per class. In such cases, it is often appropriate to apply class weightings to obtain a weighted cross-entropy loss. For example, some practitioners will weight classes based on the inverse of their abundance in the training set. You could also use Dice loss, which is more robust to data imbalance. As discussed in prior modules, you can also apply Top K or focal losses to focus on predicting difficult samples. You can even combine multiple loss metrics. For very specific use cases, you can even define custom loss measures.

Data Balancing

Synthetic samples
for minority class

Subset of majority
class

CE with class weights

Dice/Tversky loss

5

Presenter Notes
Presentation Notes
There are also methods available to balance datasets. For example, you can create more, synthetic examples of the minority classes, use minority class samples more than once in each training epoch, use only a subset of the majority class samples, apply class weights in the loss metric calculation, or apply a loss metric that is robust to class imbalance, such as Dice loss. Dealing with imbalanced data is a complex problem for both machine learning and deep learning and is still an active area of research.

Augmenting Model Architecture

Dropouts
Batch Normalization
Backbone used
Activation Functions
ReLU to Leaky ReLU

Number of hidden layers
Number of feature maps
Etc.

(3, 128, 128) (64, 128, 128,) (128, 64,
64) (256, 32, 32) (512, 16, 16)

6

Presenter Notes
Presentation Notes
It is also possible to augment standard architectures by adding dropouts and/or batch normalization (generally, batch normalization is recommended as opposed to using dropouts). You can also change the activation function. For example, leaky or parameterized ReLU could be used as opposed to ReLU. You can also change the number of hidden layers and number of kernels and resulting feature maps produced per layer within convolutional neural network architectures. We will discuss convolutional neural networks soon. One complexity with deep learning is that there are lots of hyperparameters and architectural configurations that can be manipulated, making it difficult to systematically test the influence of or potential benefit of setting and alterations.

Nonlinear

More computationally
efficient than sigmoid
or tanh

Widely used

Does not reach
gradient of zero like
RelU

Fix dying ReLU

Leaky Rectified Linear Unit (Leaky ReLU)

If Input > threshold:
return Input

Else:
return Coefficient X Input

7

nn.LeakyReLU(negative_slope=0.1, inplace=True)

Presenter Notes
Presentation Notes
In order to combat the “dying ReLU” issue, leaky ReLU maintains a gradient for negative activations as opposed to converting them to 0 by applying a slope term. Thus, the gradient does not become zero, but changes gradually. I am generally a fan of using Leaky ReLU. This is a simple change to make.

Minimize overfitting
by “dropping out” or
ignoring neurons in
the network

Often between 0.5 and
0.8

Can take longer for
model to stabilize or
converge

Dropouts

8

nn.Dropout(p=.3)

Presenter Notes
Presentation Notes
Another option is to incorporate dropouts. This consists of randomly dropping out or ignoring some neurons and their associated weights during specific weight/parameter updates. Dropping this information can reduce the reliance and fit of the model to the training data to potentially improve generalization.

Does not allow activations to get really small or
large in comparison to other activations

Decreases the influence of large
weights/stabilizes training process

Reduces overfitting

Can decrease training time

Can use a larger learning rate

Occurs on a batch-by-batch basis

Batch Normalization

9

z = (x – mean)/std

(z * g) + b

nn.BatchNorm1d(hiddenSizes[0])

Presenter Notes
Presentation Notes
Dropouts have now been replaced by batch normalization in most cases. Again, I feel that batch normalization is highly effective and should be considered a standard component of neural network architectures. One drawback is that including batch normalization will increase the number of trainable parameters in the model.

Data Augmentation

10

Presenter Notes
Presentation Notes
As mentioned in prior modules, data augmentation is often used to combat overfitting and improve model generalization and transferability. When defining data transformations, you have control over what transformations to consider (e.g., flips, rotations, contrast changes, and blurring), the probability of applying the transformation, and the degree of alteration (e.g., maximum allowed changes to contrast or blur). You may want to experiment with different augmentation techniques to assess how model performance is impacted. In later modules, we will discuss data augmentations in the context of scene labeling using convolutional neural networks and pixel-level classification using semantic segmentation methods.

Transfer Learning

http://www.image-net.org/

https://cocodataset.org/#home

11

Presenter Notes
Presentation Notes
Transfer learning can be applied to make use of weights/parameters learned from larger datasets, such as ImageNet and COCO. Later modules will show how to apply transfer learning. Generally, transfer learning has been shown to improve model performance, even if the input data and problem are different than the original use case. For example, ImageNet has been used to initiate models for labeling aerial images, even though the set includes no aerial images and different classes are differentiated. The idea here is that all images have some characteristic features, such as edges, tones, and textures, so initiating from pre-trained weights/parameters is better using a random initiation.

http://www.image-net.org/
https://cocodataset.org/#home

Transfer Learning

Sharma, Y. and Ross, R., 2020. Less is
More when Applying Transfer Learning to
Multi-Spectral Data. In AICS (pp. 301-312).

B. Pan, Z. Shi, X. Xu, T. Shi, N. Zhang and X. Zhu,
"CoinNet: Copy Initialization Network for Multispectral
Imagery Semantic Segmentation," in IEEE Geoscience
and Remote Sensing Letters, vol. 16, no. 5, pp. 816-820,
May 2019, doi: 10.1109/LGRS.2018.2880756. 12

Presenter Notes
Presentation Notes
One complexity in implementing transfer learning is that most large datasets on which pre-trained weights are based, such as ImageNet and COCO, are RGB or three-band data. However, in remote sensing and geospatial science, we are often interested in extracting information from other data types, such as digital terrain data or scanned thematic maps. Also, our data may have a larger number of bands, as in the case of multispectral imagery. Since these additional bands likely contain information that may improve the differentiation of the classes, we generally do not want to throw this information out. Other disciplines have similar problems, such as the analysis of medical imagery. One option is to initiate the model using the pre-trained weights and provide three input bands, even if they are not RGB data. In many cases, this has been shown to provide more accurate results that initiating the model using random weights, especially if all weights are unfrozen for training. If more than three bands are used, methods have been developed to augment the available weights. Two example papers that explore this topic are referenced on this slide. Note that this is still an active area of research. Another option is to augment the model architecture to accept more bands. You may also need to augment the model architecture to match the number of differentiated classes.

Schedulers

Augment hyperparameters

Change learning rate

Augment training set

Shuffle data

Freeze/Unfreeze weights

Early stopping

https://pytorch.org/docs/stable/generated/torc
h.optim.lr_scheduler.StepLR.html

13

Presenter Notes
Presentation Notes
Schedulers allow for altering the learning process between batches or epochs, or iterations over the training data. For example, schedulers can be used to augment hyperparameters, change the learning rate, augment the training dataset, shuffle the training data, freeze or unfreeze weights, or apply early stopping. Early stopping is used to stop the training process before the final epoch is reached if the model is no longer improving. As an example, let’s say you have a binary classification problem in which the background class is far more abundant than the class of interest. Or, your dataset is imbalanced. However, there is a lot of variability in the background class, so you would like to provide a wide variety of background examples. One option would be to schedule the dataset and data loader to update after each epoch to select different subsets of the background set. This would allow for the model to see a different random subset of the background training samples in each epoch. Note that PyTorch has methods available for applying schedulers. These are generally defined then applied in the training loop. The example on the slide allows for decreasing the learning rate.

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html

14

Learning Rate Schedulers

https://www.kaggle.com/code/isbhargav/guide-to-pytorch-learning-rate-scheduling

Presenter Notes
Presentation Notes
Augmenting the learning rate during training has generally been shown to improve the model performance. It can also allow for faster training. I am specifically a fan of cyclic learning rates, where the learning rate oscillates between a low and high value.The link on this slide provides example implementations of different learning rate schedulers.

https://www.kaggle.com/code/isbhargav/guide-to-pytorch-learning-rate-scheduling

 Faster convergence

One learning rate cycle

Large maximum learning rate

Large learning rate regularizes
training

15

Super-Convergence

Smith, L.N. and Topin, N., 2019, May. Super-
convergence: Very fast training of neural networks
using large learning rates. In Artificial intelligence and
machine learning for multi-domain operations
applications (Vol. 11006, pp. 369-386). SPIE.

Presenter Notes
Presentation Notes
The paper referenced here introduced the concept of super-convergence. The idea hear is to oscillate the learning rate and use a fairly large learning rate as the upper bound. This large learning rate can have the effect of regularizing the model and improving the model generalization. This process can also allow for achieving better performance with a fewer number of training epochs. I highly recommend reading through this paper. Note that super-convergence may not be possible for all models or problems.

Learning Rate Finder

https://github.com/davidtvs/pytorch-lr-finder

Smith, L.N., 2017, March. Cyclical learning rates
for training neural networks. In 2017 IEEE
winter conference on applications of computer
vision (WACV) (pp. 464-472). IEEE.

16

Presenter Notes
Presentation Notes
It is generally suggested that the learning rate is the most important hyperparameter in terms of model performance and the number of training epochs required to obtain suitable results. Thus, selecting a learning rate is key. Smith (2017) introduced a method for selecting an optimal learning rate or range of learning rates. This methods has been implemented in PyTorch and the arcgis.learn module. It is generally very fast to implement. This slide provides a link to the GitHub repo for a PyTorch implementation of this method. If you are interested in the specifics of this method, please read through the paper reference on the slide.

https://github.com/davidtvs/pytorch-lr-finder

Gradient Accumulation

Useful with small batch sizes

Do not update gradients after every batch

https://kozodoi.me/python/deep%20le
arning/pytorch/tutorial/2021/02/19/gr
adient-accumulation.html

17

if ((batch_idx + 1) % accum_iter == 0) or (batch_idx + 1 == len(trainDL)):
optimizer.step()
optimizer.zero_grad()

Presenter Notes
Presentation Notes
When training complex models, it is generally necessary to use a small batch size so as not to run out of memory. However, small batch sizes can yield noisy weight/parameter updates. In order to combat this issue, the gradients can be accumulated over multiple batches before the optimizer is applied and the weights/parameters are updated. This is known as gradient accumulation.For example, you could keep track of the gradients and only apply weight updates and optimization after every 10 batches. If the batch sizes is 10 also, this means that 100 samples would be predicted before weight updates are applied. This can be set up in PyTorch by augmenting the training loop. See the linked blog for a more in-depth explanation and examples.

https://kozodoi.me/python/deep%20learning/pytorch/tutorial/2021/02/19/gradient-accumulation.html

Combat small training
set/overfitting

Learn from labeled and unlabeled
data

Pseudo-labels

Active area of research

18

Semi-Supervised Learning

French, G., Laine, S., Aila, T., Mackiewicz, M. and
Finlayson, G., 2019. Semi-supervised semantic
segmentation needs strong, varied
perturbations. arXiv preprint arXiv:1906.01916.

Ouali, Y., Hudelot, C. and Tami, M., 2020. Semi-
supervised semantic segmentation with cross-
consistency training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 12674-12684).

Chen, X., Yuan, Y., Zeng, G. and Wang, J., 2021.
Semi-supervised semantic segmentation with cross
pseudo supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 2613-2622).

Presenter Notes
Presentation Notes
There are a variety of methods that are being explored to allow algorithms to learn from both labeled and unlabeled data, which is termed semi-supervised learning. We will not discuss semi-supervised learning in this class. However, I anticipate that these methods will continue to be developed and may result in substantial improvements in model performance and applicability. It is generally easier to find input data than it is to find input data that also have associated labels. So, methods that allow for incorporating unlabeled data into the training process have a high degree of practical value.

Use larger batch size

Decrease training time

Train on larger datasets

19

Multiple GPUs

model = nn.DataParallel(model)

https://www.run.ai/guides/multi-gpu/pytorch-
multi-gpu-4-techniques-explained

https://lambdalabs.com/

Presenter Notes
Presentation Notes
It is possible to train modules using multiple GPUs, either within the same machine or spread across multiple machines. You can even train models using GPU clusters. This can allow for faster training and larger batch sizes. In PyTorch, this can be accomplished using nn.DataParallel().

https://www.run.ai/guides/multi-gpu/pytorch-multi-gpu-4-techniques-explained
https://lambdalabs.com/

20

Reproducibility and Replicability

Engineering, M. and National Academies of Sciences,
Engineering, and Medicine, 2019. Reproducibility and
replicability in science.
Reproducibility relates to “computational

reproducibility—obtaining consistent results using the
same input data, computational methods, and conditions
of analysis.”
Replicability relates to “whether applying the same

methods to the same scientific question produces similar
results”

Presenter Notes
Presentation Notes
This slide explains the difference between reproducibility and replicability. To increase the value of scientific research, we should strive for enhanced reproducibility and replicability. One component of this is making use of open-source software tools and making code and data readily available for use by others.

21

Reproducibility and Replicability

Maxwell, A.E., Bester,
M.S. and Ramezan, C.A.,
2022. Enhancing
Reproducibility and
Replicability in Remote
Sensing Deep Learning
Research and Practice.
Remote Sensing, 14(22),
p.5760.

Presenter Notes
Presentation Notes
This paper, which is free and open-access, discusses issues of reproducibility and replicability in remote sensing deep learning research and practice.

22

Reproducibility in PyTorch

def set_seed2(seed=2019):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=False

Alahmari, S.S., Goldgof, D.B., Mouton, P.R. and Hall, L.O., 2020. Challenges for the
repeatability of deep learning models. IEEE Access, 8, pp.211860-211868.

Presenter Notes
Presentation Notes
Due to the complexity of neural network architectures and their implementations, obtaining reproducible results, where the same model can be obtained repeatedly, is not simple. The paper referenced on this slide provides code that sets multiple random seeds and other setting that should allow for reproducible results using PyTorch.

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Science, Art, Tradecraft
	Picking a Model
	Choosing a Loss Metric
	Data Balancing
	Augmenting Model Architecture
	Leaky Rectified Linear Unit (Leaky ReLU)
	Dropouts
	Batch Normalization
	Data Augmentation
	Transfer Learning
	Transfer Learning
	Schedulers
	Learning Rate Schedulers
	Super-Convergence
	Learning Rate Finder
	Gradient Accumulation
	Semi-Supervised Learning
	Multiple GPUs
	Reproducibility and Replicability
	Reproducibility and Replicability
	Reproducibility in PyTorch
	Slide Number 23

