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Presenter Notes
Presentation Notes
This module will expand upon the last module by discussing additional uses of convolutional neural networks (CNNs). 

As was discussed in the prior module, CNNs, and 2D convolution specifically, allow for the modeling of spatial patterns. Such techniques allow for images to be classified or labelled.

In the geospatial sciences, we are often interested in predicting or mapping the location of specific features within an image. Fortunately, CNNs have been expanded and modified to handle such problems. 

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Semantic Segmentation of topoDL Dataset with UNet (ArcGIS Pro)

https://github.com/maxwell-
geospatial/wvview geodl examples

tOpODL Dataset http://www.wvview.org/research.html

YOUTUbe VideO https://youtu.be/4HZ41mFhWws

Paper



Presenter Notes
Presentation Notes
This slide and the following slides describe the provided semantic segmentation examples. We have provided one example, as described on this slide, which uses ArcGIS Pro and does not require any coding. All other examples make use of PyTorch, Python, and R. Since semantic segmentation is the primary focus of this class since it has many uses in our field, most of the examples are associated with this topic and module. 

https://github.com/maxwell-geospatial/wvview_geodl_examples
http://www.wvview.org/research.html
https://youtu.be/4HZ41mFhWws

Semantic Segmentation of topoDL Dataset with Unet
(PyTorch/Python/R)

topoDL Dataset
YouTube Video

Paper



https://github.com/maxwell-geospatial/wvview_geodl_examples
https://youtu.be/wtwOSWsZ3xM
http://www.wvview.org/research.html

Semantic Segmentation of Inria Dataset with DeepLabv3+

Inria Dataset

YouTube Video

Paper



https://github.com/maxwell-geospatial/wvview_geodl_examples
https://project.inria.fr/aerialimagelabeling/b
https://youtu.be/Ac20oEYYdMM

Multiclass Semantic Segmentation of LandCover.ai Dataset with Unet++
(PyTorch/Python/R)

L.andCover.ail Dataset
YouTube Video
Paper
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https://github.com/maxwell-geospatial/wvview_geodl_examples
https://youtu.be/HxyBvugGqaw
https://landcover.ai/

Multiclass Semantic Segmentation of wvlcDL Dataset with Unet++
(PyTorch/Python/R) (Incomplete Training Data)

wvleDL Dataset

YouTube Video

Paper



https://github.com/maxwell-geospatial/wvview_geodl_examples
http://www.wvview.org/research.html
https://youtu.be/aL-S0wyNZhE
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Presenter Notes
Presentation Notes
In the last section, we discussed how CNNs can be used for labelling or categorizing entire images. For example, the image above could be labeled as an image of cats.

However, this does not tell us where in the image cats occur. Semantic segmentation address this issue. The goal here is to perform a classification at the pixel-level as opposed to the scene- or image-level. These are the types of problems that we are commonly interested in in the geospatial sciences. For example, land cover classification requires pixel-level classification as opposed to scene-level classification. This is the focus on this section.

Instance segmentation consists of identifying each instance of the class separately. For example, both cats in the image could be identified as belonging to the cat class and as separate instances of this class. 

Semantic and instance segmentation techniques have been developed that rely on convolutional neural networks. In this module, we will focus on semantic segmentation. This is still an active area of research. Although there are a variety of methods, I will focus this discussion on a few methods that are commonly used: Fully Convolutional Neural Networks (FCNs), UNet, UNet++, and DeepLabv3+.
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Presenter Notes
Presentation Notes
This figure conceptualizes the difference between scene classification/labeling, object detection, semantic segmentation, and instance segmentation. 
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Presenter Notes
Presentation Notes
This is an example of a scene classification problem, as was discussed in the prior module. Here, each image is predicted to a category without any localization or pixel-level classification. 

https://csc.lsu.edu/%7Esaikat/deepsat/

o .
o Scene Classification

Reference

Barren Building Grassland Road Tree  Water
Barren 18,205 0 47 0 0 0
Building 0 3,678 0 4 0 0
Grassland 162 0 0 15 0
Classification
Road 0 2066 0 0

Tree 0 0 14,170 0
Water 0 0 0 30,068

PA 0998 0.999  1.000



Presenter Notes
Presentation Notes
This confusion matrix represents an assessment of a scene classification problem, where each sample is an entire image as opposed to pixels or other sampling units. In contrast, each assessment unit for semantic segmentation would be individual pixels as opposed to entire scenes or images. 
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Abstract: Deep learning (DL) has great influence on large parts of science and increasingly

established itself as an adaptive method for new challenges in the field of Earth observation (EO).

Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing
field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in
EO, this review gives an overview of the evolution of DL with a focus on image segmentation and
object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set
new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections
between the most important CNN architectures and cornerstones coming from CV in order to alleviate
the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most
popular DL frameworks and provide a summary of datasets in EO. By discussing well performing
DL architectures on these datasets as well as reflecting on advances made in CV and their impact on
future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and
practical application in EO.

Keywords: artificial intelligence; AT; machine learning; deep learning; neural networks; convolutional

neural networks; CNN; image segmentation; object detection; Earth observation
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Abstract: In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by
investigating aggregated classes. The increase in data with a very high spatial resolution enables
investigations on a fine-grained feature level which can help us to better understand the dynamics of
land surfaces by taking object dynamics into account. To extract fine-grained features and objects,
the most popular deep-learning model for image analysis is commonly used: the convolutional neural
network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning
on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs.
We extensively examine the spatial distribution of study sites, employed sensors, used datasets and
CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main
finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this,
we argue that in the near future, investigations which analyze object dynamics with CNNs will have
a significant impact on EO research. With a focus on EO applications in this Part I, we complete the
methodological review provided in Part I.

Keywords: artificial intelligence; AI;, machine learning; deep learning; neural networks;
convolutional neural networks; CNN; image segmentation; object detection; earth observation



Presenter Notes
Presentation Notes
If you are interested in learning more about semantic segmentation, I recommend this series of articles by Hoeser et al. 


Fully Convolutional Neural Networks
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Presenter Notes
Presentation Notes
How can we obtain pixel-level classifications using convolutional neural networks? Generally, the first component of semantic segmentation architectures are very similar to the architectures of those designed for scene classification. Here, 2D convolution and max pooling are used to learn spatial filters at different scales. Also, the ReLU activation function is generally used to add nonlinearity. It is also possible to incorporate batch normalization. In the case of scene classification, the final feature maps generated by the last convolutional layer are then flattened to a 1D vector and fed to fully connected layers to predict the scene-level membership to a defined set of classes. However, this will not work for semantic segmentation. 

For semantic segmentation when using fully convolutional neural networks (FCNN), after spatial patterns are learned at multiple scales using the 2D convolution and max pooling operations, the resulting feature maps are not flattened to a 1D vector and no fully connected layers are used. Instead, the data are upsampled to generate pixel-level predictions. The first, downsampling component of the model that uses 2D convolution to learn patterns is often termed the encoder or backbone while the upsampling component is termed the decoder. 

Fully Convolutional ANNs (FCNs) commonly make use of either upsampling or transpose 2D convolution to perform the upsampling or decoding. Then, class probabilities can be generated at each pixel using a sigmoid function, in the case of binary classification, or softmax, in the case of multiclass classification. It is also possible to obtain class logits.

In order to make use of feature maps generated at different scales and from prior convolutional layers, not just the last convolutional layer, skip connections can be included. This allows for feature maps to be fed to a later process as opposed to the next set of convolution and max pooling operations. For multiple feature maps from different layers to be combined or concatenated, they must have the same length in the spatial dimensions. This is why some means of upsampling is required. 
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Presenter Notes
Presentation Notes
This slide further conceptualizes a FCNN architecture. Similar to CNNs for scene labeling tasks, a series of 2D convolution and max pooling layers are used. In the example, each 2D convolution layer uses a kernel size of 3x3 and a stride of 1. If padding is used, then this will maintain the size of the tensor in the spatial dimensions. Following each 2D convolution block, batch normalization and a ReLU activation function are applied. 

Following the 4 2D convolution blocks and all associated operations, no flattening or fully connected layers are used. Instead, a final 2D convolution layer with a kernel size of 1x1 and a stride of 1 is used. This allows for transforming the feature maps into class logits. 

In order to learn from feature maps from all prior 2D convolution blocks as opposed to just the final 2D convolution block, skip connections are used. Skip connections allow for bypassing components of the model. They allow for feature maps generated at different locations in the architecture to be concatenated or stacked into a single multi-channel tensor. In order to perform this stacking, all the input tensors must have the same shape in the spatial dimensions. This is why some means of upsampling the data are required. 


OO

Fully Convolutional ANNs

This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.

The & ative version of this

ailable in IEEE Xplore.

Fully Convolutional Networks for Semantic Segmentati

¥

Evan Shelhamer* Trevor Darrell

UC Berkeley

nlong, shelhamer, trevor}@ berkeley.edu

Abstract

onvolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state he-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary and produce
-sized output with efficient inference and

learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [20],
the VGG net [3]], and GoogLeNet [32]) into fully convolu-
tional networks and transfer their learned representations
gmentation task. We then define a

bines semantic information from

shallow, fine layer to pr ce accurate and detailed
mentations. Our full volutional network achieves state-

“the-art segmentation of PASCAL VOC (20% relative im-
provement (o 62.2% mean 1U on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

forward/inference

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like seman egmen-
tati
show that a fully convolutional network (FCN)

trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existi
networks predict dense outputs from arbitrar
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelv
diction and learning in nets with subsampled pooling.

s method is efficient, both asymptotically and abs
lutely, and precludes the need for the complications in other
works. Patchwise training is common 2,7 1, but
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Presenter Notes
Presentation Notes
Long et al. (2015) first introduced the fully convolutional ANN architecture. 
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Presenter Notes
Presentation Notes
Why used 1x1 2D convolution to obtain the final class logits? This is simply a means to change the number of channels without changing the spatial dimensions of the data or augmenting the pixel values using values in adjacent cells. In other words, a set feature map values at a pixel location can been reduced to a set of class logits. These logits can then be passed through a sigmoid or softmax activation to obtain the positive class probability or all class probabilities, respectively. 

Using 1x1 2D convolution as opposed fully connected layers has an additional added benefit: this allows the architecture to accept images of varying sizes in the spatial dimensions. Since no flattening is applied, there is no issues with varying length vectors being provided to fully connected layers. 

So, FCNs can be trained using and make inferences to images of varying sizes.
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Upsampling
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“*Upsample feature maps
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Presenter Notes
Presentation Notes
A variety of techniques are available to upsample images or feature maps. For example, resampling methods, such as nearest neighbor, bilinear interpolation, or cubic convolution, can be used. These are the same techniques commonly used in remote sensing and GIS operations to change the cell size of an image or raster grid using near cell values in the original array. 

The earliest FCN architectures used upsampling methods. Upsampling methods are not strictly “deconvolution” since they do not reverse the convolution process or use kernels with trainable weights. Upsampling methods, such as nearest neighbor, do not have trainable weights. They are simply mathematical interpolation/estimation operations used to estimate cell values from near cell values in the original array.
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Presenter Notes
Presentation Notes
Another means to increase the size of tensors in the spatial dimensions is transpose convolution.

In contrast to upsampling methods, transpose convolution allows for the learning of weights to upsample the feature maps. Note that this is not strictly a “deconvolution” operation, which simply reverses the convolution process to obtain back the original data with the original spatial resolution, or number of rows and columns. 

Similar to 2D convolution used in the encoder, transpose convolution allows for the learning of weights associated with kernels of a defined size. As a result, these layers are trainable. In order to upsample the array in the spatial dimensions, the array size is increased by adding zeros in between values or existing pixels and applying padding. The number of zero measurements and amount of padding added depends on the original stride and padding used. 

Kernels and weights are then learned using the new feature maps to upsample the image. 

Please see the blog post linked on this slide for a detailed explanation of transpose convolution. 


https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

Encoder-Decoder Architecture
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U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, ipp Fischer, and Thomas Brox

Computer Sc e Department and BIOSE re for Biological Signalling Studies,

University of Freiburg, Germany
ronneber@informatik.uni-freiburg.de,

WWW home page: /1mb.informatik.uni-freiburg.de/

re is large consent that successful training of deep net-
many thousand annotated traini amples. In thi:

trategy that
able annotated samp!
ontracting path to c
and a 5 path that enables pi

tion. We show that s n be trained end-to-end from ve:
few ima rms the prior best method sliding-window
convolutional network) on the ISBI challenge for segmentation of neu-
ronal structures in electron mi ic sta s the same n
work trained on transmitted li s (phase contrast
and DIC cki “he 2 in these
gories by a large margin. Moreo

of a 512x512 image t less than a second on a recent GPU. The full
implementation (based on Caffe) and the trained networks are available
at http://lmb.informatik. eiburg.de/people/ronneber /u-net.

1 Introduction

In the last two years, deep convolutional networks have outperformed the state of
the art in many visual recognition tasks, e.g. [7,3]. While convolutional networ
have already existed for a long time [8], their success was limited due to the
size of the available training sets and the size of the considered networks. The
breakthrough by Krizhevsky et al. [7] was due to supervised training of a large
network wi nd millions of meters on the ImageNet dataset with
Since then, even larger and deeper networks have been

The typical use of convolutional networks is on classification tasks, where
the output to an image is a single class label. However, in many visual tasks,
especially in biomedical image processing, the desired output should include
localization, i.e., a class label is supposed to be gned to each pixel. More-
over, thousands of training images are usually beyond reach in biomedical ta:
Hence, Ciresan et al. [1] trained a network in a sliding-window setup to predi
the class label of each pixel by providing a local region (patch) around that pixel
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Presenter Notes
Presentation Notes
The UNet method was first introduced in 2015 and builds upon FCNs. This slide provides a reference to the paper that introduced UNets. Although originally developed for medical image segmentation, it has been shown to have many applications. 

https://arxiv.org/abs/1505.04597

O
O
UNet Components @

Encoder or Downsampling or Decoder or Upsampling or Expansion
Contraction 1. Deconvolution with
1. 2D Convolution (3 x 3), stride : (2 X 2), stride of 1

of 1 2. Skip connections

< Activation (ReL.U) 3. 2D Convolution (3 x 3), stride of 1

& Batch Normalization 4. Final layer = 2D convolution (1 x
(sometimes) 1), stride of 1

<Padding % Sigmoid, softmax, or no

. activation
2. Dropouts (sometimes)

3. Max Pooling (2 x 2), stride of 2
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Presenter Notes
Presentation Notes
This slide outlines the key components of UNets. There are different flavors of UNets, and the example provided here does not follow the method outlined in the original paper.

The encoder, downsampling, or contracting component is a traditional CNN architecture, similar to those we discussed in the last module. 3x3 2D convolution layers with a stride of 1 and 2x2 max pooling with a stride of 2 are used to produce feature maps at different scales. It is common to use ReLU as the activation function for the convolution layers; however, other activation functions can also be used, such as leaky ReLU. Batch normalization is used to reduce overfitting, and padding is used to maintain the array size and edge pixels. It is also possible to include dropouts, but that is not always applied. 

The decoder, upsampling, or expansion component works like a traditional CNN, but in reverse. Transpose convolution, or sometimes upsampling methods, are used to increase the size of the array in the spatial dimensions. Skip connections are used to concatenate the feature maps from the encoder component to the decoder component at the same level or the level having the same array size. This allows for incorporating the information learned in the encoder into the later stages of the learning process occurring in the decoder. Additional 2x2 2D convolution with a stride of 1 are used to learn new filters in the decoder blocks. The 2D convolution is generally followed by an activation function, such as ReLU, and sometimes batch normalization. 

Finally, 2D convolution with a 1x1 filter and a stride of 1 is used to perform the classification at the pixel- or cell-level to obtain logits. To obtain the positive class probability for binary classification, the sigmoid function is used whereas softmax will be used for multiclass problems. 

UNet has a symmetrical architecture. Or, the number of upsampling or encoder operations or blocks are equal to the number of downsampling or decoder blocks. This allows for skip connections were feature maps from the associated downsampling block are concatenated with the operations at the upsampling block to maintain more spatial detail and localization. Since the feature maps being concatenated via the skip connections have the same size in the spatial dimensions as the tensors they are being concatenated with, there is no need to incorporate upsampling techniques into the skip connections. This is in contrast to the FCNN architecture already discussed. 
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Presenter Notes
Presentation Notes
This slide further describes the structure of a UNet. 

The encoder consists of a series of blocks. Each block includes a pair of 2D convolution layers, each using a kernel size of 3x3 and a stride of 1. In the example, each 2D convolution is accompanied by batch normalization and a ReLU activation function. In the encoder, the size of the array in the spatial dimension is reduced between each block using max pooling with a kernel size of 2x2 and a stride of 2. There are a total of 4 decoder blocks. 

The block between the encoder and decoder is generally termed the bottleneck. It also consists of double-2D convolution. 

To undo the reduction in array size in the spatial dimensions resulting from the max pooling operations in the encoder, the decoder uses 2D transpose convolution with a kernel size of 2x2 and a stride of 2. This results in each encoder block and associated decoder block accepting tensors with the same sizes in the spatial dimensions. 

In order to make full use of the spatial context information learned in the encoder blocks, the learned feature maps from the encoder are concatenated with the upsampled feature maps form the decoder using skip connections. Since the arrays already have the same sizes in the spatial dimensions, there is no need to apply an upsampling method in the skip connections. 

Similar to FCNs, the final logits are obtained using 1x1 2D convolution with a stride of 1. 
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Presenter Notes
Presentation Notes
This slide highlights the sizes of the tensors at each operation or block in the UNet architecture. Blue indicates the input image shape while green represents the output shape. In this case a 3-band input is provided and 10 class logits are returned. 

Orange indicates the shapes associated with the 2D convolution operations in the encoder and decoder blocks while gray maps to max pooling operations and yellow maps to 2D transpose convolution. 

Make sure you understand why these array sizes are obtained throughout the architecture. 


o |
UNet Implementations

“*Segmentation Models
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Presenter Notes
Presentation Notes
Currently, there are implementations of UNet available using PyTorch, Tensorflow/Keras, and ArcGIS Pro. The PyTorch modules will show how to build a UNet architecture by subclassing nn.Module. We will also explore the Segmentation Models library, which simplifies the implementation of semantic segmentation methods using PyTorch. 

Note also that UNet is a flexible framework, so a variety of different architectures, augmentations, and/or backbones can be used. For example, sometimes dropouts are incorporated. 

https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models.pytorch
https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html

NG

o between
encoder and decoder

“*Redesigned
“»Dense skip connections

“*Deep supervision
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Presenter Notes
Presentation Notes
Since the introduction of UNet, many researchers/developers have proposed alterations and expansions of the originally proposed structure. For example, UNet++ was proposed in 2018.

This structure is designed to improve the localization of UNet for mapping fine features. Instead of using simple skip connections between the encoder and decoder paths, additional convolutional operations are performed. 

This is just one example of an augmentation or expansion of the original UNet architecture.
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Presenter Notes
Presentation Notes
The graphics presented here attempt to characterize the key components of UNet++. The gray circles represent 2D convolutional operations. The outer operations represent the base UNet architecture with a series of convolution blocks in the encoder and decoder. The array sizes in the encoder are decreased using max pooling with a kernel size of 2x2 and a stride of 2 while array sizes in the decoder are increased using transpose convolution with a kernel size of 2x2 and a stride of 2. 

UNet++ augments the base architecture of UNet by incorporating additional 2D convolution blocks along each skip connection path. Also, additional 2D transpose convolution operations are performed between these paths. Along each path, skip connections are included to bypass intermediate 2D convolution blocks. Specifically, the feature maps from the first 2D convolution block is concatenated before each subsequent 2D convolution block along the path, and all results from each prior 2D convolution block are bypassed to the final 2D convolution block.

The idea here is to reduce the semantic gap between the encoder and decoder with additional 2D convolution blocks between the encoder and decoder and with the skip connections and dense connection structure. 


O
o
Deep Supervision in UNet++

“*Accurate = Average across
all branches

‘»Fast = Select one model
from all branches

“*Allows for model pruning
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Presenter Notes
Presentation Notes
Another component of UNet++ is the ability to implement deep supervision. The UNet++ architecture can be thought of as a nested structure of UNets of varying size or number of encoder and decoder blocks. Each of these nested UNets can be combined with a final 1x1 2D convolution layer to obtain separate predictions. The predicted logits can be averaged across these nested levels to potentially improve the performance. Alternatively, one of the nested UNets, as opposed to the largest Unet, could be used to make the final prediction, which could increase the speed of the computation and inference. This is essentially a means to prune the structure. 

Using multiple predictions within this nested structure allows for deep supervision. However, it is not necessary to implement deep supervision when using UNet++.
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https://www.mdpi.com/2072-
4292/12/10/1544

https://zenodo.org/record/
3926831#.XzhMbOhKiUk

~ Border
-

©

% Segment

D
Z‘ ‘ I Inner
> Ta—af

UNet oD Conv 2D Conv
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Presenter Notes
Presentation Notes
UNet has also been applied to instance segmentation problems. For example, UNet-ID uses multiple UNets to detect individual instances of features by learning to identify features, feature boundaries, and feature interiors separately. We will discuss this method in more detail in the following section in the context of instance segmentation. 

https://www.mdpi.com/2072-4292/12/10/1544
https://zenodo.org/record/3926831#.XzhMbOhKiUk

Spatial Pyramids




»
o : : o
Convolution with Dilation

* Atrous convolution

“*Add zeros in kernel to expand kernel
size

“Increases the size of the receptive EEEEEEEEEEE
] L

field
X Le?rn spatial patterns at varying ==== ====
scales EEEEEEEEEEN
**Dilation Rate =
“»Dilation Rate = 3 = B =
“*Dilation Rate = 5
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Presenter Notes
Presentation Notes
In order to increase the effective field of view or receptive field of convolutional operations and in order to learn spatial context information over larger extents, some semantic segmentation architectures make use of dilation or atrous convolution. The idea is to insert zeros into the kernel filters to increase the distance between cells included in the operation. This is generally controlled using a dilation rate. 

In the example image, the red cell represents the cell that is being processed, which is included in all the kernel windows. The purple cells are included when using a dilation rate of 1. This is equivalent to a normal 3x3 kernel. The blue cells are included when the dilation rate is 3, and the green cells are included when the dilation rate is 5. In all cases, the number of cells with trainable weights is 9. The difference is in the spacing between the included cells, which again is controlled by the dilation rate. The dilation rate determines the number of inserted zeros. 

It is also possible to use dilated convolution with more then 9 trainable weights in the kernel. In such configurations, the dilation rate within the kernel would control how many zeros are inserted between cells that have trainable weights. 

In, summary, the key idea behind atrous convolution is to change the effective field of view, or receptive field, by incorporating offsets in the moving window, which is controlled by a dilation rate. So, windows can be made up of pixels that are not adjacent, allowing for a larger effective field of view. 



g O
DeepLabv3+

1. Use 3. 1x1 convolution and 3x3 convolution
to generate feature maps to learn additional filters
2. Atrous Spatial Pyramid Poolingto 4. to resize feature maps

obtain multi-scale spatial context
information. Consists of:

+» 1x1 convolution

¢ 3x3 convolution with different
dilation/atrous rates

“*Image pooling for global context

5. Concatenation to stack feature maps
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Presenter Notes
Presentation Notes
As an example of an architecture that incorporates atrous convolution, we will explore the DeepLabv3+ architecture, which originated at Google and was subsequently open-sourced. This algorithm is one of the different architectures in the DeepLab family.  

Similar to UNet, DeepLabv3+ relies on an encoder/decoder architecture. However, it incorporates atrous convolution and spatial pyramid pooling. The key components of the model are described on this slide. 

First, an encoder or backbone is used to extract kernels at vary spatial resolutions. Some of the kernels in this architecture will used atrous convolution. There is also a second atrous spatial pyramid pooling (ASPP) component that is designed to further capture spatial context information at multiple scales. We will discuss this component on the next slide. 1x1 and 3x3 convolution is used to learn additional filters, and upsampling and concatenation are used to standardize the sizes of feature maps in the spatial dimension and merge them into a single tensor, respectively. 

Please have a look at the links provided for additional details. The paper that introduced the method is also referenced here. 

https://github.com/tensorflow/models/tree/master/research/deeplab
https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74
https://developers.arcgis.com/python/guide/how-deeplabv3-works/

O
o
Atrous Spatial Pyramid Pooling

N 1x1 Conv

' ASPP

*+» Allows for multi-scale
context information to be
combined/learned without
significantly increasing the whh Dilston
architecture size and Image
number of parameters Pooling

3x3 Conv
with Dilation

3x3 Conv
with Dilation

Concat 1x1 Conv
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Presenter Notes
Presentation Notes
Atrous Spatial Pyramid Pooling (ASPP) allows for the aggregation of spatial context information across scales and also the incorporation of global information from the image. 

Feature maps from prior layers are passed through a series of operations including 1x1 2D convolution, multiple 3x3 2D convolutions with different dilation rates, and image pooling to incorporate global context information.

The learned feature maps are then concatenated and passed to a 1x1 2D convolution layer to further abstract the data. 

Again, the goal here is to learn spatial context information at different scales and increase the size of the receptive field. 


g O
P DeepLabv3+

1x1 Conv

3x3 Conv
with Dilation

3x3 Conv

with Dilation Concat 1x1 Conv

3x3 Conv
with Dilation

Upsample

Image by 2

Dilated
CNN
Pooling
Upsample
x3 Conv
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Presenter Notes
Presentation Notes
This slide conceptualizes the components of DeepLabv3+. 

The input data are passed through a backbone encoder network that incorporates dilated convolution. The feature maps learned in the backbone are then passed to the ASPP module. The learned feature maps from the ASPP module are then concatenated and passed through a 1x1 2D convolution layer. Lastly, upsampling is applied so that the feature maps have the same size in the spatial dimensions as the feature maps to which they will be concatenated in the decoder component of the model. 

In the decoder component of the model, the feature maps from the encoder backbone are passed through a 1x1 2D convolution layer. The feature maps from the ASPP module that have been upsampled are then merged with these feature maps via concatenation. The layers then pass through a 3x3 2D Convolution layer and then upsampled by a factor of 4 to obtain the pixel-level prediction at the spatial resolution of the input image. 

This architecture has the same purpose as the UNet architecture: to make predictions at the pixel-level. However, the architecture is different. As described here, one of the key differences is the use of atrous convolution and the ASPP module. 

It should be noted that atrous convolution can be integrated into other architectures, even UNets. This is not a technique specific to the DeepLab family. However, it is a key component of the DeepLab algorithms. 


Backbones
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¥ O
Backbones

“*Can use CNN backbones as encoder component
“»Allows for using pretrained weights

“*Encoder weights can be:
“* Frozen
“*Trained
“*Trained during a subset of epochs

“*Examples = ResNet, DenseNet, InceptionNet, EfficientNet, MobileNet,
DPN, VGG
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Presenter Notes
Presentation Notes
The backbone or encoder component of semantic segmentation models are equivalent to the convolutional layers of a CNN for scene labeling tasks. As a result, different CNN architectures can be used as the encoder component of semantic segmentation models. 

Since famous or commonly used architectures, such as those listed on this slide, have been trained using large datasets (e.g., ImageNet), this allows for pre-trained weights to be used in the backbone component of semantic segmentation architectures. Such transfer learning techniques may allow for improved model performance and/or faster training time. It is possible to freeze the weights/parameters in the backbone, initialize them with the pre-trained weights but still update them during the training process, or update them during only a subset of the training epochs. 


o
P Example: UNet with VGG-16 Backbone

ClnpUt - 2D Convolution 3x3, Stride =1
onv 1-1
Convi-2 L N N N N N _ B _ 0 0N B _ B _§N _§B § § |
- Concatenation
e - 1D Convolution, Stride= 1
onv 2-1

——— 2%2 Max Pooling, Stride = 2

== == == == - Encoder to Decoder Skip Connection
) 2D Transpose Convolution, Stride = 2



Presenter Notes
Presentation Notes
This slide conceptualizes using a VGGNet-16 architecture as the backbone or encoder for a UNet. Only the convolutional components are used; the fully connected layers are not included. Since skip connections are used, it is necessary to match the component of the VGGNet-16 architecture with the correct size in the spatial dimensions with the associated decoder block. This will be demonstrated in the PyTorch examples. 

Once this architecture is defined, it is possible to initialize the model using pre-trained weights for the encoder and random weights for the decoder. 


o
P Example: UNet with ResNet-18 Backbone

2D Conv 7x7, Stride=2

Max Pooling, Stride = 2

In
Conv 7x7, Stride =2 I N I S DS B B B B .

2D Convolution 3x3, Stride =1

Max Pooling, Stride = 2

Conv 3x3, Stride=1
Conv 3x3, Stride=1
Conv 3x3, Stride=1

Conv 3x3, Stride =1 N

2D Convolution 3x3, Stride = 2

Concatenation
Conv 3x3, Stride = 2
Conv 3x3, Stride=1
Conv 3x3, Stride =1 1D Convolution, Stride= 1
Conv 3x3, Stride=1

Conv 3x3, Stride = 2 Identity Connection

Conv 3x3, Stride =1

Conv 3x3, Stride=1

Convolution in the Residual Block

Conv 3x3, Stride =1 performed with stride = 2

nngRinns

Conv 3x3, Stride =2

Conv 3x3, Stride =1 == == == == Encoder to Decoder Skip Connection

Conv 3x3, Stride =1 ——) 2] Transpose Convolution, Stride = 2
Conv 3x3, Stride=1
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Presenter Notes
Presentation Notes
This slide conceptualizes using a ResNet-18 architecture as the encoder for UNet. Again, only the convolutional components are used, not the fully connected layers. The stages of the ResNet must be matched with the correct decoder block so that the tensor sizes in the spatial dimensions match. Also, the first set of operations in the ResNet decrease the size of the input tensor. As a result, an initial set of 2D convolution layers are used in the first encoder block while components of the ResNet architectures are used in the subsequent encoder blocks. 

I will demonstrate implementing a ResNet architecture as the encoder for UNet in the PyTorch examples. 


Practical Considerations




o :
ol Segmentation Models

= README.md := README.rst

Python library with Neural Networks for Image
Segmentation based on PyTorch.

y " Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow.
LICENSE | MIT BUILD | PASSING f§ DoCs | PASSING

& PYPI  V0.3.2 DOWNLOADS  58K/MONTH pypi package [1.0.1 docs [passing! build

PYTORCH 1.4+ i PYTHON 3.6+
The main features of this library are:

The main features of this library are:

L]

High level API (just two lines of code to create model for segmentation)

tatlign el AREO Gt e linesto.ceesieta Bt Getaio i) ¢ 4 models architectures for binary and multi-class image segmentation (including legendary Unet)

® 9 models architectures for binary and multi class segmentation (including legendary Unet) 25 e g f l hitact
. available backbones for each architecture

® 124 available encoders (and 500+ encoders from timm)

) All backbones have pre-trained weights for faster and better convergence
e All encoders have pre-trained weights for faster and better convergence P 9 El

o Popular metrics and losses for training routines Helpful segmentation losses (Jaccard, Dice, Focal) and metrics (loU, F-score)
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Presenter Notes
Presentation Notes
In the PyTorch modules, I will demonstrate how to build a UNet from scratch by subclassing the nn.Module class defined by PyTorch. I will also demonstrate how to used pre-trained backbones or encoders. However, it can be difficult to build all semantic segmentation architectures from scratch, apply CNN-backbones, and load pre-trained weights. This is especially true as architectures become more complicated. 

If you want to be able to use a variety of semantic segmentation architectures, defined architecture components (such as the number of encoder and decoder blocks), use common backbones as the encoder component (such as VGGNet, ResNet, or MobileNet), and use pre-trained weights, I highly recommend checking out the Segmentation Models package. This package is available for both PyTorch and Keras/Tensorflow. I will demonstrate it in the PyTorch modules.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models

O
o
Backbones and Weights

2+ Use some common backbones as
encoder

“*Allow for application of pre-trained
weights

“*Decrease overfitting and training
time

“*May require certain number of
input channels

“*Freeze and unfreeze weights

“*Train subset of layer weights

v ResNet

Encoder
resnet18
resnet34
resnet50
resnet101

resnet152

v Inception

Encoder
Inceptionresnetv2
Inceptionv4

xception

Weights Params, M
imagenet / ssl / swsl 11M
imagenet 21M
imagenet / ssl / swsl 23M
imagenet 42M
imagenet 58M
Weights Params, M
imagenet / imagenet+background 54M
imagenet / imagenet+background 41M
imagenet 22M
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Presenter Notes
Presentation Notes
The Segmentation Models package allows for easily using different backbones and pre-trained weights. Again, this will be demonstrated in a PyTorch module. 


0
o :
Data Requirements

“*Image chips of defined shape: (3,

512, 512), (3, 256, 256), (3, 128,
128), etc.

<+ Label/classified image with 1
numeric code per class and same
shape as image chips

“+Common formats: JPEG, PNG, TIFF
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Presenter Notes
Presentation Notes
In order to perform semantic segmentation, you will need to generate image chips and associated masks where each code in the mask represents a category. For example, a binary classification would require a mask where each cell is coded as 0 or 1. The background class would be coded to 0 while the positive class would be coded to 1.

These chips are commonly saved in JPEG, PNG, or TIFF format in a folder structure that clearly links the image and its associated mask. For example, the images may be saved in an “image” folder while the masks are saved to a “label” or  “mask” folder, and each image and its associated mask would have the same file name.

Some commonly used shapes are listed on this slide. Note that larger tensors will take more time and computational power to process. They will also need to be fed through the network during training using a smaller batch size. The largest batch size possible will depend on your computer hardware, such as GPU VRAM, and the complexity of the semantic segmentation model. 

ArcGIS Pro and QGIS have tools available for generating image chips and associated masks from geospatial datasets. 


Favorites

€) Export Training Data For Deep Learning
Parameters Environments

Input Raster

Output Folder
Input Feature Class Or Classified Raster

Class Value Field

Buffer Radius
Input Mask Polygons

Image Format
TIFF format

Tile Size X
Tile Size ¥
Stride X
Stride ¥

Rotation Angle
Reference Systemn
Map space
Output No Feature Tiles
Meta Data Format
KITTI Labels

= || ma[] pa
P || wn ||
0o || & | &

P
=]

images

=]

labels

- esri_accumulated_stats
ri_model_definition.emd

E map

stats

for cr in
# Set Lo
arcpy.env.
quadhim =
os.mkdir
subdir =
inRaster =
out_folder
in_training
image_chip_format =
tile

output_nc
metadata_format
index

_polygons
angle

# Execute
ExportTrainingDataForDeeplearni
image_chip format,tile_size

soutput_nofeature_tiles, m
classvalue_field, buffer_radius, in_mask_polygons, rotation_angle,
ound_feature,

referenc
os.mkdir(subdir + "1
subdirL2 = subdi

for m in ma
constl
outTime

+ guadNm +

» tile size y, stride_x,
format, st

blacken_



Presenter Notes
Presentation Notes
ArcGIS Pro provides the Export Training Data for Deep Learning Tool that can be used to create image chips for training, testing, and validation. This tool can also be accessed via ArcPy and the arcgis.learn module. It is available with a valid Spatial Analyst or Image Analyst extension license.

This tool can generate image chips for a wide variety of tasks including scene labeling, semantic segmentation, object detection, and instance segmentation. 

https://pro.arcgis.com/en/pro-app/tool-reference/image-analyst/export-training-data-for-deep-learning.htm
https://developers.arcgis.com/python/api-reference/arcgis.learn.html

o :
P Using QGIS

(2 Plugins | Installed (20)
& Al
# Installed

W Notinstalled
% e
¥ install from ZIP

# Settings

M beeFen
[l Coordinate Capture

A= DB Manager

.=_~ eVis

M4 Freehand Editing 3

l® Geometry Checker
Georeferencer GDAL
"5 GPS Tools

Il 5 GRASS 7

M2 LAStools

[FA® Load Q55 - Ul themes
3% MetaSearch Catalog Client
™ Offlinekditing

[ % Processing

v

[ Qdraw

M1 & qgis2web

% QuickMapServices

[FA# Semi-Automatic Classification Plugin
W< Topology Checker

Input Image

Input Label

Export Directory

HFroCEessIing 1 00100X

Parameters: Output Options:

Class Value: mull [ Center Pixel Label Type: -

Window Size: X 100 ¥ 100 Format: TIFF

@R This plugin is experimental

Produce Training Data
For Deep Learning - "

Stride: X 50 Y 50

The plugin fragments the remote sensing im
to be used as deep learning training dataset

Deep learning has achieved unprecedented accuracy in a
variety of fields, including remote sensing. But not every n
sensing professional h rong programming background

which is tha required skill for practising deep learning. Whil [RELIEERERENGENGEETEE CHl I EaaS pE =l S S OK  Cancel

are available in online repositories, pre-processing the rem
sensing datas to reach the training stage ill a tedio
and requi programming knowledge. Proprietary options to

pre-process the data only on mouse clicks are available.
However, a to such licensed software is often expensive
and hence limited for a large population of researchers and

Uninstall Plugin Reinstall Plugin

Close  Help
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Presentation Notes
Plugins have also been developed for QGIS to generate image chips. This provides an open-source and free alternative to ArcGIS Pro. 

https://github.com/PratyushTripathy/QGIS-Plugin-Produce-Training-Samples-For-Deep-Learning

chipIt <- function(image, mask, n_channels=3, size=256,
stride_y=256, outDir, mode="Al1"
require(terra
require(imager
1f(mode == "Al1"
imgl <- rast(image
maskl <- rast(mask

fName = basename(image

dir.create(pasteO(outDir, "/images"”
dir.create(pasteO(outDir, "/masks™

across_cnt = ncol(imgl
down_cnt = nrow(imgl
tile_size_across = size
tile_size_down = size
overlap_across
overlap_down = stride_y

across <- ceiling(across_cnt/overlap_across
down <- ceiling(down_cnt/overlap_down
across_add <- (across*overlap_across)-across_cnt

stride_x

stride_x=256,
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Presentation Notes
It is also possible to produce custom scripts to generate image chips. As part of this class, I will demonstrate R functions that my lab group built that can generate raster masks and chips, create lists of chips and masks, and describe the dataset. These functions makes use of the terra R package and work well with geospatial data. 


o
P Dataset Prep

’:‘ Generate ChipS class MultiClassSegDataset(Dataset):

def _ _init_ (self, df, classes=None, transform=None,):
» Mask with unique numeric code for each Sl e
ClaSS self.transform = transform

def __getitem__(self, idx):

’:‘ SeleCt Chip Size image_name = self.df.iloc[idx, 2]

mask_name =_se1F.dF.i1oc[idx, 3]
* . . . image = cv2.imread(image_name)
< Augmentations applied to image and mask image = cv2.cvicolor (image, cv2.COLOR_BGRZRGE)

mask = cv2.imread(mask_name, cv2.IMREAD_UNCHANGED)
o image = image.astype('uint8')
% Subclass PyTorch Dataset class mask = mask[:.:,0] |

if(self.transform is not None):

transformed = self.transform(image=image, mask=mask)

o i image = transformed["image"]

® Va " T = =
9 &y (& Ly v, ’ b mask = transformed["mask"
{ \ n *
4 & S = - [

gEeA sy K Gaet O \_\ iy _ hd B e ey, image = torch.from_numpy(image)
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Presenter Notes
Presentation Notes
In the provided PyTorch examples and in order to read in the image chips and associated masks, I will subclass the PyTorch DataSet class to load in custom data. Some common processing tasks include reading in files, converting to numpy arrays, converting to torch tensors, moving data between the CPU and GPU, changing the order of the dimensions, and rescaling from 8-bit to float (0 to 1). 

Again, we have and will continue to discuss DataSets and DataLoaders in detail in the PyTorch examples. 


g O
Binary vs. Multiclass

“+Sigmoid = Binary
“*Softmax = Multiclass
“*Can apply class weights

“+*Can ignore class (incomplete training samples)


Presenter Notes
Presentation Notes
When performing binary classification, it is common to use a sigmoid function in the final layer to obtain class probabilities. For multiclass problems, softmax is used. Alternatively, if no function is applied raw logits are returned. 

For binary classification and when using a sigmoid activation, only the logit for the positive class will be predicted. When using softmax for a binary classification, logits for both the positive and negative classes will be predicted. For multiclass problems, logits for all classes will be predicted. 

When determining whether you need to convert logits to probabilities with a sigmoid or softmax function, the key consideration is what is expected by the loss metric implementation. Some loss metric implementations will expect raw logits while other will expect probabilities. We have and will continue to discuss this in detail in the PyTorch modules. 

It is also possible to change the weight of each class when training the model and defining the optimizer. You can even ignore a class so that it does not impact the weight updates, which can be useful when training data are incomplete or not wall-to-wall. We discussed class weighting methods in the Metrics and Losses module. 


¥ O
Class Imbalance

“*Use Dice loss (or Focal Dice, Tversky, Focal
Tversky)

¢ Use Combined loss
“*Use Weighted Cross-Entropy

“*Augment class proportions in training set
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Presentation Notes
When classes are imbalanced, you can implement a loss function that is more robust to this issue, such as Dice loss, Tversky loss, or weighted BCE/CE loss. You can also use a combination of losses, such as Dice + CE or Tversky + CE.

You can also generate augmentations of the training data to increase the number of samples or the number of samples for specific classes. For example, you may choose to oversample the minority class and/or use a subsample of the more dominant class. We discussed such techniques for improving models and combating class imbalance in prior modules. 


o :
P Learning from Incomplete Data

“*Create a background class

“*Background class has in
learning process or loss calculation

“*An example:

“+*Can be implemented using ArcGIS Pro


Presenter Notes
Presentation Notes
Adequate training data are not always available to generate masks with a classification or reference at each cell or location. This is a common issue; for example, you may only have a set of training polygons as opposed to a wall-to-wall reference set. 

Such data can still be used as input to UNet and other semantic segmentation methods. However, this will require that all cells that do not have an associated classification available be coded to a background class. During the process of training the algorithm, you will then need to assign a weight of zero to this background class so that it does not impact the model and loss calculations. 

The link on this slide provides an example where this process was applied for land cover mapping. ArcGIS Pro/arcgis.learn can also generate and use incomplete training data for semantic classification. 

https://medium.com/geoai/high-resolution-land-cover-mapping-using-deep-learning-7126fee571dd

o .
P Data Augmentations

test_transform = A.Compose(
[A.PadifNeeded(min_height=512, min_width=512, border_mode=4), A.Resize(512, 512),]
)

train_transform = A.Compose(
[
A.PadifNeeded(min_height=512, min_width=512, border_mode=4),
A.Resize(512, 512),
A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.5),
A.HorizontalFlip(p=0.5),
A.verticalFlip(p=0.5),
A.MedianBlur(blur_Timit=3, always_apply=False, p=0.1),

)

¢ Albumentations
pypi package [100:01 () c1 [passing!

Albumentations is a Python library for image augmentation. Image augmentation is used in deep
learning and computer vision tasks to increase the quality of trained models. The purpose of image
augmentation is to create new training samples from the existing data.

Here is an example of how you can apply some augmentations from Albumentations to create new
images from the original one:

https://github.com/albument

ations-team/albumentations

s*Increase number of
training samples

“*Reduce overtitting

<*Examples: flip, rotate, blur,
sharpen, brightness,
contrast, saturation, swap
bands, and gamma

\/
0;’

“*Albumentations package
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Presentation Notes
Again, data augmentation is useful for reducing overfitting, especially when the size of the training set is small. I recommend experimenting with the Albumentations package, which offers a wide variety of data augmentations and is pretty easy to use. Torchvision also offers tools for data augmentation. 

Since pixel-level alignment between images and masks must be maintained, it is important to apply the same set of transforms to image and mask pairs if the position of pixels in the chip are altered. This is important when applying rotations and flips, for example. This issue is generally handled well by the Albumentations package. 

https://github.com/albumentations-team/albumentations

def geoInfer(image_in, pred_out, chip_size, stride_x, stride_y, crop, n_channels):

imagel = cv2.imread(image_in) ° ° °

imagel = cv2.cvtcolor (imagel, cv2.COLOR_BGR2RGB) ‘

imagel = imagel.astype('uint8") ‘ ‘

imagel = torch.from_numpy(imagel) ‘

imagel = imagel.permute(2, 0, 1)

imagel = imagel.float()/255

t_arr = imagel o t t o t f
st o1k 570 e i with correct coordinate reference
image2 = cv2.cvtcolor (image2, cv2.COLOR_BGR2RGB)

image2 = image2.astype( 'uint8’ (] ]

image2 = torch.from_numpy (image2)

image2 = image2.permute(2, 0, 1) 1 I I Orl I l a 10 I l

image2 = image2.float()/255

p_arr = image2[0, :, :]

p_arr[:,:] =0

St o 1
B “*Can use overlap

n_channels=n_channels

across_cnt = t_arr.shape[2]

down_cnt = t_arr.shape[1]

tile_size_across = size

tile_size_down = size ‘ o o o
overlap_across = stride_x ‘ ‘ ‘ 7

overlap_down = stride_y ‘

across = math.ceil(across_cnt/overlap_across)

down = math.ceil(down_cnt/overlap_down)

across_seq = list(range(0, across, 1))

[ ]
down_seq = Tist(range(0, down, 1))
across_seq2 = [(x*overlap_across) for x in across_seq] I I I a I 1 I I S
down_seq2 = [(x*overlap_down) for x in down_seq]

for c in across_seq2:
for r in down_seq2:

*+»Use GPU for faster inference

if €2 <= across_ent and r2 <= down_cnt:

rlb = rl
rzb = r2
clb = cl
c2b = c2
elif ¢2 > across_cnt and r2 <= down_cnt:
rlb = r
r2b = r2
clb = across_cnt - size
c2b = across_cnt + 1

elif €2 <= across_cnt and r2 > down_cnt:

rlb = down_cnt - size
rzb = down_cnt + 1
clb = cl
c2b = c2

else:
clb = across_cnt - size
c2b = across_cnt + 1
rlb = down_cnt - size

r2b

dov_lr}_cntl—l_ 4 WY g 50
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For geospatial predictions, we commonly want to merge individual predictions made on image chips back to single, continuous maps covering the spatial extent of interest. When doing so, it is common to use overlapping chips and use only the predictions from the center of chips, which are generally more accurate than predictions near the margins. 

In the examples, I will demonstrate methods for merging chips and assigning spatial reference information to generate map output. 


Please return to the West Virginia View
Webpage for additional content.
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Thanks! Hope you found this useful. 
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