Geospatial Deep Learning
ANNSs

AmericaView

Empowering Earth Observation Education
AmericaView.org - Est. 2003

Presenter Notes
Presentation Notes
The goal of this module is to provide a conceptual overview of how artificial neural networks (ANNs) work, the components of ANNs, and how deep learning extends this framework. I have tried to minimize the math and focus on key concepts.

We will specifically focus on fully connected neural networks (FCNNs) as opposed to convolutional neural networks (CNNs), which will be covered in later modules.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Conceptualizing ANNs

®
o
ANN Structure

o COHSiSt Of interconneCted Input Layer Hidden Layer 1 ~ Hidden Layer2 Output Layer
neurons or nodes

“»Input layer represents “\\é%“\
redictor variables S
: WA
<& represents > Val N

o . Va \.
what is being predicted / ”Vl‘\w,
“*Model generated by — . // _ \\. o
learning a weight N4 - P ; w9 Nl

assoclated with each
connection

Presenter Notes
Presentation Notes
ANNs are often described as being modeled after the human brain, as they consist of interconnect neurons or nodes. However, how these learning algorithms function is not necessarily comparable to the human brain, so I try to avoid using this analogy.

An ANN consists of neurons organized into layers as demonstrated on the slide. Input layers represent input predictor variables, such as image bands, and have one neuron for each input, while output layers represent the desired output, such as land cover categories, and have one neuron for each output class. For binary classification, one or two output neurons may be used. For regression, there will be one output neuron.

Between the input and output layers are one or more hidden layers containing multiple nodes. Within the network, all neurons in a layer are connected to the neurons or nodes in adjacent layers, and these connections have weights.

On the slide, the conceptualization contains three inputs (e.g., three image bands) and two hidden layers containing 4 nodes each. There are two classes being classified or predicted. Note that all nodes or neurons between adjacent layers are connected. These connections represent the weights.

Through the process of supervised learning, the weights in the network are adjusted in an attempt to improve the prediction of the output.

O
O
Weights

“*Weights are adjusted during
training process

“*Similar to slope or coefficient in
regression

“*Inputs from prior layer multiplied
by weights

“*Multiple Input X weight
combinations are summed

“*Weights relate to strength of
activation or signal

Presenter Notes
Presentation Notes
This slide further describes the concept of weights and how a signal or activation is produced at each node.

This is actually very similar to multiple linear regression. The weights are comparable to the coefficients for each predictor variable while the bias (b) is similar to the y-intercept.

So, at this point, the activation or output of the node is a linear combination of the inputs to the node, associated weights, and bias.

®
4
Bias

A constant to shift the
activation

“*Similar to a y-intercept in
linear regression

Presenter Notes
Presentation Notes
Again, the bias at each node is similar to the y-intercept in a linear regression equation. It is not multiplied by any input.

The bias allows the activation to be shifted to larger or smaller values, like an offset. The addition of a bias term further increases the flexibility of the model.

g O
ANNSs vs. Deep ANNs

2 More hidden layers Input Layer Hidden Layers Output Layer

“*Model more complex
relationships

K
O

Presenter Notes
Presentation Notes
How is deep learning (DL) different from a traditional ANN? The key difference is the number of hidden layers, or layers between the input layer and output layer.

Deep learning algorithms generally have many hidden layers and associated nodes, as opposed to just one or two hidden layers.

So, you can think of “deep” as referring to the depth of the model or number of hidden layers.

Interestingly, it has generally been shown that incorporating more layers is more effective than having fewer layers with a large number of associated neurons. One reason why this might be the case it that a larger number of layers allows for more data abstraction than a small number of layers with a lot of nodes or neurons.

g O
Strengths

“*Model complex patterns/relationships
“*Abstract data
“*Less feature space engineering required

“*Robust framework for a wide variety of
tasks

Presenter Notes
Presentation Notes
DL has taken off recently as it has been shown to perform well for a variety of predictive modeling tasks.

Although it is not always clear why DL algorithms can generate accurate predictions, it is generally suggested that this results from the algorithm's ability to model complex patterns and relationships in the input data due to the large number of hidden layers and learned weights/parameters. This allows for greater data abstraction to capture complex patterns and relationships.

Another strength of DL is that less feature space engineering is often required. Traditional machine learning methods often require the production of a variety of predictor variables to feed into the model. In contrast, DL models generally will accept a smaller number of input predictor variables and learn more complex features from the inputs using the hidden layers and weights. This reduces the amount of data pre-processing required.

Lastly, ANNs and DL is a general framework that can be applied to a wide variety of problems and tasks. It has been successfully applied to regression and classification problems. It has also revolutionized the field of computer vision, including fueling advancements in robotics and self-driving car technologies.

g
ol Weaknesses

<*Computationally expensive
“*Large training sets

“*Local minima
“*Overfitting

*»Learn bias

Presenter Notes
Presentation Notes
All modeling methods have weaknesses and complexities, and DL is no exception.

First, these models are complex and thus computationally expensive. They tend to take a long time to train and require a lot of resources, such as memory. Some DL methods, such as those based on convolutional neural networks, cannot be ran efficiently on CPUs and require GPUs to perform the computations.

Generally, DL algorithms require a lot of examples or training data to learn complex patterns and not overfit. In fact, the availability of “big data” along with increased computational resources have been key in advancing DL over the past decade.

ANNs and DL suffer from the local minima problem. The image on the slide conceptualizes the problem. The lowest trough in the curve represents the optimal solution. However, there are other troughs in the curve, which represent local minima. During the process of training, the algorithm may get stuck in a local minima and fail to find the optimal solution.

DL algorithms can overfit to the training data. Overfitting means that the model does an excellent job predicting the training examples but does not generalize well to new data. Training DL algorithms, and machine learning algorithms in general, is often a trade-off between reducing overfitting so that the model generalizes well to new data, but not generating a model that is too generalized and cannot model complex patterns in the data. This is why it is important to validate models using data that are not included in the training data set.

Lastly, DL algorithms, and machine learning methods in general, can generate a biased result or prediction if the training data are biased or not representative of the entire population. For example, if you are trying to predict where a tree species may occur on the landscape and you know that the species can be found in coves and in river bottoms, a model would likely be biased if only examples in coves were provided. Such issues can be very complex, especially when making predictions related to individuals, such as who is eligible for a mortgage to buy a home.

Activation Functions

»
o) . :
Activation Functions

“*Allow for modeling of nonlinear relationships

“*A mathematical gate between inputs and outputs

Activation Activation
Function or
Signal

10

Presenter Notes
Presentation Notes
I left out an important component above in the discussion associated with weights, bias, and activation at each neuron or node. As I mentioned, this is similar to a multiple regression equation where the bias acts as a y-intercept, the weights act as coefficients, and the inputs act as the predictor variable values. In reality, this is more than similar to a multiple regression equation: it is a multiple regression equation.

In order to be able to model complex patterns and relationships between variables and make predictions from a complex and noisy signal, it would be useful to be able to model or describe more complex patterns in the data.

This is accomplished by (1) having many interconnected nodes, associated weights, and hidden layers and (2) applying an activation function to transform the activation or signal (or, the output from the neuron). Over the next few slides, I will provide some examples of activation functions.

Note that just having multiple neurons and multiple hidden layers is not enough to model non-linear relationships. A series of linear relationships is still linear. Thus, activation functions are required to model non-linear patterns and relationships.

O
o :
Binary Step

»*Either neuron
activates or does not

*»Scaled from o to 1
(on and off)

“*Does not work with
backpropagation
(derivative 0, no
gradient)

“*Binary classification

“*Not commonly used

If Input > threshold:

return 1

| Else:

return O

Presenter Notes
Presentation Notes
Perhaps the simplest activation function is a binary step. This activation function takes the values and transforms them into 0 and 1 or true and false. So, the neuron is either on or off.

This can be thought of as a simple if…else statement. If the value meets a criteria, it is coded to 1, true, on, or full signal. If it does not, then it is coded to 0, false, off, or no signal. The only options are full activation signal or no activation signal. There are no gray levels.

As we will discuss later in this module, weights are updated using backpropagation, which relies on calculus and derivatives. The derivative of this equation would be zero, or no gradient. So, weights cannot be updated using backpropagation.

Due to its simplicity and incompatibility with backpropagation, this activation function is rarely used.

®
& .
Linear

“*Linear
transformation Coefficient X Input

“*Does not work well
with backpropagation
(derivative is a
constant, no gradient)

12

Presenter Notes
Presentation Notes
Values can also be linearly rescaled using a coefficient. Note that this does not fix the issue of modeling non-linear patterns, as the resulting activation function is still linear.

Also, the derivative of a straight line is a constant, so there is no gradient. Thus, backpropagation cannot be used to updated or learn the weights.

As a result, this activation function is also not commonly used.

g o
Sigmoid or Logistic

**Nonlinear
**Scaled fromoto1

“*Works with
backpropagation

“*Vanishing

gradient problem

+*Not zero-centered

B 1/(1+e”(-Input))

Presenter Notes
Presentation Notes
A sigmoid or logistic function is used to rescale the data from 0 to 1. This is generally used when the goal is to differentiate between two groups or categories and is similar to logistic regression.

Weights can be learned when using a sigmoid function as there is a gradient. However, there are some issues. First, the slope approaches zero for high or low activations. This can result in a vanishing gradient problem, where the gradient approaches 0 and the model becomes difficult to train. It is also not zero-centered because the mean activation is not near zero: in the example it is near 0.5 since the output is scaled from 0 to 1. This can be an issue, as it decreases strong positive and strong negative activations or signals.

In this class, you will primarily see sigmoid activation functions applied to convert raw logits to class probabilities that sum to 1.

g O
Logistic or Sigmoid

“Logit = 2.6
“1/(1+ €2% = 0.931

14

Presenter Notes
Presentation Notes
This slide provides an example of how a sigmoid activation is used to convert a raw activation or logit to a probability value that is scaled between 0 and 1. In this case, the positive class probability is 0.931. Since probabilities must sum to 1, this means that the negative class probability is 0.069.

o .
TanH or Hyperbolic Tangent

s*Nonlinear

**Scaled from -1to 1

“*Works with
backpropagation

“*Vanishing gradient
problem

s 7Zero-centered

Presenter Notes
Presentation Notes
TanH is an augmentation of the sigmoid activation function that is zero-centered. The output is scaled from -1 to 1 with a mean activation near 0.

However, this activation function still suffers from the vanishing gradient problem.

®
O
Softmax

“*Nonlinear

<*Similar to sigmoid, except allows for more than two classes
“*Multiclass sigmoid

< Uses logit scores for multiple classes

< Used in final layer of multiclass classification models

16

Presenter Notes
Presentation Notes
The sigmoid and TanH activation functions are commonly used in binary classification or when two categories are differentiated. The softmax activation extends this framework to allow for the differentiation of more than two class and is commonly used in multiclass classification problems.

In this class, you will commonly see this activation function applied to convert raw logits to class probabilities where the sum of all class probabilities is 1.

®
O
Softmax

%93 Classes, B is correct class

“*Logits = -1.5, 2.3, 1.8

“*Denominator = €15 + €23 + e18=16.25
“*Prob for A = €15/16.25 =

“*Prob for B = €23/16.25=

“*Prob for C = €1-8/16.25=

0.014 + 0.614 + 0.372 = 1.000

17

Presenter Notes
Presentation Notes
The slide demonstrates how a softmax activation is used to convert raw logits for multiple cases to probabilities.

First, e is raised to the power of each of the raw logits then the results are added together. In order to then generate probabilities for each class, e is raised to the power of that logit then divided by the sum of e raised to a power of each logit. This will result in a set of probabilities that sum to 1, with the predicted class being the one with the highest logit and associated probability.

The example is for three classes. However, softmax will work with any number of classes other than 1. For a binary classification, the problem can be framed such that only one logit is predicted: the one associated with the positive class. In this case you would use a sigmoid activation. If two probabilities are returned, one for the positive and one for negative class, then you would use a softmax activation. A sigmoid activation function cannot be used when more than two classes are differentiated. Also, both sigmoid and softmax are not applicable to regression problems.

»
)
Rectified Linear Unit (ReLU)

*Nonlinear

“*More
computationally
efficient than sigmoid
or tanh

“*Widely used

*Not zero-centered

“*Not all neurons
updated during
backpropagation due
to 0 gradient (dying
ReLU)

If Input > threshold:

return Input

| Else:

return O

Presenter Notes
Presentation Notes
The rectified linear unit (ReLU) activation function is currently commonly used. This allows for an activation of 0 below a certain threshold and a linear activation above a certain threshold. It is also more computationally efficient than sigmoid and TanH. Generally, negative values are converted to 0 while positive values are maintained.

This activation function does have some issues. First, it is not zero-centered and second, since part of the function has a slope or gradient of 0, this can cause issues with backpropagation known as the “dying ReLU” problem. Despite some issues, it is still commonly used.

0
o
Leaky Rectified Linear Unit (Leaky ReLU)

ozoNonlinear oo f IHpUt > threShOId:

: n In
“*More computationall return Input

efficient than sigmoi Else: o
or tanh | return Coefficient X Input

“*Widely used

**Does not reach

gradient of zero like
RelU

“*Fix dying ReLLU

19

Presenter Notes
Presentation Notes
In order to combat the “dying ReLU” issue, Leaky ReLU maintains a gradient by applying a coefficient to the part of the function that has a slope of 0 when using ReLU. Thus, the gradient does not become zero, but changes gradually.

»)
o
Parameterized Rectified Linear Unit (Parameterized ReLU) @

< Like Leaky Relu, accept coefficient
of negative component is trainable

“*Fix dying ReLLU

20

Presenter Notes
Presentation Notes
The parameterized rectified linear unit activation is similar to leaky ReLU except that the coefficient of the negative component is trainable by the model.

®
o
Swish

“*Input X Sigmoid(Input)
“*Nonlinear

“*Easier to converge while
training compared to
sigmoid

“*Computationally expensive

21

Presenter Notes
Presentation Notes
The swish activation function is similar to sigmoid accept that it does not suffer from the vanishing gradient problem. It has similar computational efficiency to ReLU.

> O o .
What activation function to use?

NG

o5 or Tanh should be avoided due to vanishing gradient problem

“*However, is commonly used as the activation for the last layer
in the network when performing binary classification

“*ReL.U 1s a good default
“Use or Parameterized ReLU to avoid dying ReL.U problem

“*Softmax is used for last layer of multiclass classification

22

Presenter Notes
Presentation Notes
This slide provides some suggestions for selecting an activation function.

The process

Processing Tiles

Assessment
Metrics

Data and
Labels

1w . s mzm—=

i = H

;=.=IIlI ul El - inlm] I
Meall

Assess
Model

Ched ozt » P/ 1N
e veea T Partition / Inference —»
Tnput Data ChlpS > Testing Set "’

Products
i \ Confusion Matrix ROC Curve

Validation Set

Training Set

P-R Curve

IoU Dice/F1
)

€D @ /\
Deep Learning Trained Model
Method/Architecture

/)' \ Training Log

Hyperparameters/ \ Training Metrics
Settings . . .
8 Validation Metrics

Callbacks/Training Data Augmentations
Process Controls

Presenter Notes
Presentation Notes
The image on this slide conceptualizes the learning process.

First, input data, in this example image chips and associated labels, must be generated then partitioned into separate training, validation, and testing sets. The training data are used to train the model while the validation data are used to assess the model at the end of each training epoch, or iteration over the training data. Once a final model is obtained, it can then be assessed on the withheld testing data.

Other than preparing data, the analyst will also have to select an appropriate architecture for the problem or use case. The base architecture may need to be augmented for specific tasks. The user must also define hyperparameters and other settings or components (for example, the optimizer, learning rate, loss metric, and accuracy metrics). It is also possible to define schedulers or callbacks, such as manipulating the input data or hyperparameters between training epochs or logging the loss and accuracy metrics.

Once a final model has been obtained, it can be assessed using the withheld testing data and, if deemed accurate enough, be used to infer to new data. For example, all images covering a desired spatial extent could be predicted to produce a land cover map.

OO

Terminology

\/
0.0

% Training = process of learning from the provided
examples/training data

¢ Assessment = use withheld data to assess model
performance

\/
0.0

% Inference = use trained model to predict to new data

\/
0.0

% Training Set = samples used to train the model

\/
0.0

= samples used to assess the model at
the end of each training epoch X

\/
0.0

= withheld data used to assess the final
model

.0

% Optimizer = algorithm used to update
weights/parameters

.0

% Loss Metric = metric or metrics used to guide
optimizer in the learning process (e.g., binary cross-
entropy, cross-entropy, MSE, or 1-Dice)

.0

Assessment Metrics = metrics monitored to assess
model performance but not used by the optimizer to
update weights (e.g., overall accuracy, precision,
recall, F1 Score)

Epoch = one iteration over the training set

tch or = subset of data;
weight/parameter updates performed after
processing each training batch

Hyperparameters = settings provided by the user and
nq[t l)earned in the training process (e.g., learning
rate

Data Augmentations = manipulation of input data to
reduce overfitting (e.g., randomly flip images)

Callback = makes changlgel to training process at end of
a training batch or epoch, often based on some
criteria (e.g., save model if there was an improvement
over I')lOI‘ model or change learning rate after 25
epochs

= model does not generalize well to new
data because it has learned to memorize the training
samples 25

Presenter Notes
Presentation Notes
This slide provides some common terminology associated with the learning process.

O
aﬁ

LLoss Functions

7S Overall Loss RPN Bounding Box Loss
“*Measure of 4

— Training

< Used to assess learning o
during training

<*Goal is to update weights [N
to minimize the measure 3 o

Epoch
Mask R-CNN Class Loss (e) Mask R-CNN Bounding Box Loss (f) Mask R-CNN Mask Loss
0.4

+*Use different measures
for different situations

0.30 1

0.27 1

+**Can created custom .|

measures or use multiple
measures R A S

Presenter Notes
Presentation Notes
The loss function is a metric that is monitored to determine if predictions are improving or if the network is learning. The goal is to minimize or decrease the loss over multiple iterations, or epochs, over the training data. Since loss is to be minimized, it is commonly a measure of error as opposed to accuracy.

Loss metrics are very important, as they guide the learning process and the weight/parameter updates. We will discuss different loss functions in a later module.

Confusion Matrix or Error Matrix

Classified
Data

Forested

Reference Data

Forested

Pasture/
Grass

Barren

Cropland

Developed

User’s
Accuracy

8

11

O

81%

Pasture/
Grass

81

O

81%

Barren

(0]

86%

Cropland

83%

Developed

88%

Water

Total

Producer’s
Accurac

80%

Presenter Notes
Presentation Notes
Other than just monitoring or reporting the loss, it is also generally useful to assess the model using accuracy assessment metrics. For example, assessment metrics can be calculated for withheld validation data at the end of each training epoch, or iteration over the training samples. The final model can be assessed relative to withheld testing samples.

We will discuss accuracy assessment metrics for different use cases in a later module.

Optimizers

28

multidimensional slope or
derivative

‘*What is the downhill

)

. . . . n
direction (direction S
opposite of)? =

. . - 7))

o5 is direction of Z
—

steepest ascent

*Want to move in direction
of negative

“*Derivative of loss with
respect to a parameter

Weight or Parameter

29

Presenter Notes
Presentation Notes
When a neural network architecture is first defined, the weights or trainable model parameters will be randomly initialized. Since these weights are purely random, it is expected that the model will not predict the data well. The goal of the learning process is to update the weights/parameters to improve the predictive power of the model. This is accomplished by calculating the loss then updating the weights/parameters to reduce the loss metric.

In the example graph, the x-axis represents a value or parameter being learned while the y-axis represents the loss. The orange line conceptualizes how the model performs, as measured by the loss, using different values of the learned parameter. The best parameter is the one that provides the lowest loss, which corresponds to the lowest point on the curve. Note that this conceptualization can be extended into more dimensions to represent more trainable parameters. For example, this surface could be modeled in two dimensions if there are two trainable parameters. Although we cannot visualize this surface when there are a large number of trainable parameters, it can be mathematically described.

Unfortunately, the value for the parameter that provides the lowest loss is not known beforehand. So, the training data must be used to estimated the optimal parameter value during the learning process. Updates to this parameter are made using the derivative of the loss with respect to the parameter. The goal is to update the weights in the opposite direction of the gradient, or opposite to the maximum ascending slope, to further minimize the loss.

The concept of a gradient is similar to a derivative except that multiple parameters must be considered. In other words, you can think of gradients as multidimensional derivatives. Before making weight updates, the derivative of the loss with respect to each trainable parameter must be calculated. The parameters are iteratively updated using an optimization algorithm in an attempt to minimize the loss. This is accomplished using derivatives and the chain rule.

“*Algorithm used to adjust/update weights
during training process

*Goal 1s to minimize the loss

“*Update parameters in the negative gradient
direction to minimize loss

*Based on and the chain rule

30

Presenter Notes
Presentation Notes
The gradient decent algorithm is used to update the network parameters and weights in an attempt to minimize the loss function during the process of supervised learning.

Derivatives and the chain rule are used to determine the gradient, or whether the model is moving toward the minimum or away from it. This knowledge can then be used to update the weights/parameters so that the model moves towards the minimum to decrease the loss. Since there are many weights that are calculated, the slopes, derivatives, or gradients are interrelated. So, this problem must be solved using the chain rule.

Although the mathematics of the optimization process are outside of the scope of this course, the important point here is that algorithms can be used to improve the loss over multiple learning iterations over the training set to gradually reach or approach the optimal solution or minimum loss (i.e., global minimum).

g O
Backpropagation

2+ Use and chain rule to
calculate contribution of each
trainable parameter to the total loss

“*This is accomplished using gradient-
based optimization algorithms

31

Presenter Notes
Presentation Notes
This process relies on backpropagation where errors are propagated backward through the network to mathematically understand their source. Or, the gradient of the loss with respect to each trainable parameter can be determined. This allows for weights/parameters to be adjusted at the correct locations to improve the model.

O
o Ce . :
Optimization Algorithms

“*Gradient Descent

“*Stochastic Gradient Descent

“*Momentum

*»Nesterov Accelerated Gradient (NAG)

< Adaptive Gradient Algorithm (Adagrad)
“*Adadelta

“*Root Mean Square Propagation (RMSProp)

< Adaptive Moment Estimation (Adam)

“»*Adaptive Moment Estimation with Decoupled Weight Decay
Regularization (AdamW)

“*Nesterov Accelerated Adaptive Moment Estimation (Nadam) -

Presenter Notes
Presentation Notes
A variety of optimization algorithms are available that solve this problem using different methods. A full discussion of these methods are outside of the scope of this course.

Currently, RMSProp, Adam, and AdamW are commonly used. However, this is still an active area of research, so augmented or new optimization methods will likely be made available in the future.

https://keras.rstudio.com/reference/index.html

¥ O
Gradient Descent @

N/

< = use entire training set to guide weight updates

“*Stochastic Gradient Descent = only use one sample to guide each weight
update

»*Mini-Batch Gradient Descent = use a subset or mini-batch of the data to
guide each weight update

33

Presenter Notes
Presentation Notes
The most commonly used optimization algorithms build on gradient descent. Gradient descent uses all of the training samples to guide the weight updates. In contrast, stochastic gradient descent uses only a single training sample to guide each weight update. Mini-batch gradient descent breaks the data into a set of partitions, or mini-batches, which are then used to guide each weight update.

It is most common to use mini-batch gradient descent. For example, if you have 10,000 training samples available, you may split them into 1,000 mini-batches each containing 100 samples. Each of the batches will then be fed through the model, losses will be calculated using the predictions and provided labels, backpropogation will be performed, and the optimization algorithm will be used to update the trainable parameters.

A single iteration over all of the training mini-batches sequentially is called a training epoch. Again, when using mini-batch gradient descent, the weights/parameters are not just updated at the end of the entire training epoch but after processing each mini-batch. This is generally more computationally efficient than gradient descent and less noisy than stochastic gradient descent. Also, it can help minimize overfitting in comparison to gradient descent.

Generally, when users indicate that they implemented stochastic gradient descent, what they really mean is that they used mini-batch gradient descent.

O
o :
Learning Rate @

“*Learning Rate = hyperparameter that specifies how large a step is
taken to reduce the loss

“*High values = may jump over minima or fail to model complex
patterns

“*Low values = take too long to converge or get caught in

Learning Rate

34

Presenter Notes
Presentation Notes
Optimizers rely on user-defined settings, and the learning rate is generally considered to be the most important setting.

The learning rate specifies how large a step is taken to reduce the loss at each weight/parameter update. If this value is high, this may allow the model to jump over or not get stuck in local minima; however, the model may fail to model complex patterns in the data. If it is too low, it may take a long time for the model to converge or stabilize. Further, there is a greater chance of the model getting stuck in a local minima. The best setting is case specific.

The learning rate controls how much a parameter can change with each update. To calculate the new parameter, you multiply the learning rate by the gradient and subtract this from the old parameter value. So, a larger gradient and a larger learning rate can both yield a larger change in the parameter value during a weight update.

A local minima can be thought of as a low point or trough in the loss surface that is not the lowest point, or global minima. Thus, if the optimizer gets stuck in a local minima, it is not able to return or find the optimal model parameters.

®
o
Mini-Batch Gradient Descent

“*Start at random weights/parameters
“*Weights/parameters updated after each

“Iteratively adjust the weights/parameters to descend to lowest value of
loss, cost, or objective function

“*Calculate the step sizes for each weight/parameter as (Learning Rate *

)

“*New Value = Old Value + Learning Rate * Gradient

“*Repeat process until reaching stopping criteria

35

Presenter Notes
Presentation Notes
This slide provides a general overview of how mini-batch gradient descent is implemented.

The neural network architecture is initialized with random weights or parameters. The training data are fed through the model as mini-batches. The resulting predictions and provided labels are then used to calculate the loss. Backpropogation is performed to estimated the gradient of the loss with respect to each trainable parameter. The weights are then updated using the optimization algorithm. The magnitude of the update depends on the learning rate and the gradient. One iteration over all training mini-batches is called a training epoch.

The learning process will iterate over the entire training set multiple times, or over multiple epochs. The learning process will stop once a stopping criteria has been met. Common stopping criteria include (1) reaching a specified loss, (2) reaching a specified number of training epochs, (3) reaching a specified loss or assessment metric value for the withheld validation data, or (4) seeing no improvements in the loss or model performance for a given number of epochs.

0
O
Learning Rate Schedulers

“+Use callbacks to change the

“*Change after a defined number of epochs
“*Change if is not changing
“*Change based on a mathematical function

“*Early Stopping = stop training early if no improvement in

Presenter Notes
Presentation Notes
It is also possible to manually change the learning rate during the learning process using call backs or schedulers. For example, you can change the learning rate after a defined number of training epochs or if the loss has not improved after a given number of weight updates. You can also define learning rate schedulers that change the learning rate using a mathematical function, such as oscillating using cosine annealing or linearly increasing or decreasing using a slope term.

You may choose to halt the training process early if the model has not improved after a given number of training epochs based on either the training loss, validation loss, or an assessment metric calculated from the training or validation data. Using the validation data to gauge when to stop the training process can be useful for avoiding overfitting to the training data.

®
o)
Mini-Batch Gradient Descent with Momentum @

* Accumulate

X term increases for parameters whose gradients point in the
same direction

“*Reduces updates for parameters whose gradients change directions

37

Presenter Notes
Presentation Notes
Most optimizers are simply advancements or augmentations of mini-batch gradient descent. One issue with gradient descent is that it only considers the current gradient. In order to allow for prior gradients to inform the current parameter updates, a momentum term can be added. Momentum is basically just a weighted average over the past gradients. If the gradients are large on average, this will allow for larger parameter updates. When gradients are smaller and/or have varying directions, weight updates will be smaller.

In physics, the concept of momentum relates to a moving objects ability to change speed and/or direction. Larger or more massive objects traveling at a higher velocity or speed have more momentum. As a result, these objects are harder to stop. This same concept applies here. With larger weighted average gradients, the parameters will be easier to update and less likely to not get stuck or not update. This is one means to not get stuck in a local minima or at a “saddle” point.

®
Adam

“*Adaptive learning rates for each parameter separately
<+ Uses exponentially decaying average of past squared gradients

“*Keeps track of multiple past gradients and incorporates

Presenter Notes
Presentation Notes
There are a variety of algorithms that expand upon or modify basic mini-batch gradient descent.

One means to improve upon mini-batch gradient descent is to allow for the learning rates to be adapted separately for each trainable parameter. Several different methods have been proposed to accomplish this. One commonly used algorithm is Adam.

I tend to use a version of Adam called AdamW, which is argued to implement weight decay in an improved manner in comparison to Adam.

Overfitting

“*Learns patterns that are too specific to training data

“*Does not generalize well to new data
“*Balance between overfitting and overgeneralization

“*Caused by:
“*Complex models
“*Small training datasets
“*Training for too many epochs
“*ANN architecture and design issues

40

Presenter Notes
Presentation Notes
Again, training deep learning models is often a tradeoff between overfitting, where the model predicts the training data well but does not generalize to new data, and overgeneralization, where the model is too general and fails to model the complexity of the data.

In deep learning, we generally tend to worry more about overfitting, as this tends to be an issue if models are complex, the number of training samples is small, and/or the architecture and design of the network is not optimal.

Fortunately, methods have been developed to combat overfitting.

g o
Dropouts

“*Minimize overfitting
by “dropping out” or
ignoring neurons in
the network

“+Often between 0.5 and
0.8

<+ Can take longer for
model to stabilize or
converge

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Ov—O
</ =\
TSI
<X 0}"0 S

"‘§ "‘ AA AN

v le\> .IA
LR

Input w,
[N, 4] [3.4]

f , Output
[4, 4] P 4,2] [N, 2]

41

Presenter Notes
Presentation Notes
One option is to incorporate dropouts. This consists of randomly dropping out or ignoring some neurons and their associated weights/parameters in the network during some weight updates.

Dropping this information can reduce the reliance and fit of the model to the training data to potentially improve generalization. This is a type of model regularization.

> O
Batch Normalization

“*Does not allow activations to get really small or

large in comparison to other activations
S P z = (x — mean)/std

»Decreases the influence of large
weights/stabilizes training process

“*Reduces overtfitting
“*Can decrease training time
“*Can use a larger learning rate

“*Qccurs on a batch-by-batch basis

42

Presenter Notes
Presentation Notes
Dropouts have now been replaced by batch normalization in most cases.

Batch normalization moderates the changes in activation so that they do not get too large or too small. Normalization is accomplished by subtracting the batch mean and dividing by the standard deviation for the learned parameters.

You can then apply an adjustment of the parameter values using a coefficient (g) and a bias (b). Both of these parameters are trainable.

Batch normalization has been shown to reduce the need for dropouts and alleviates the associated information loss. This normalization can reduce overfitting, decrease training time, and allow for the use of larger learning rates.

I have found batch normalization to be really useful and tend to include it in my models. We will discuss batch normalization and how to implement it within different architectures throughout the course.

0
o :
Data Augmentation

**Add random noise to
data

“*Generate more variety
and more samples

“+*Common when working
with images

43

Presenter Notes
Presentation Notes
Another option is to augment the input data.

This is common when working with image data. The data can be augmented using flips, rotations, rescaling, cropping, blurring, sharpening, or changing the hue, saturation, and/or brightness.

These transformations are generally applied randomly and within certain pre-defined constraints. For example, saturation may only be allowed to change by 20%.

The idea is to (1) increase the number of training samples and (2) increase the variety or variability within the training samples so that more generalizable patterns are learned.

o .
P Transfer Learning

< Start with weights learned from a larger training data set

“*Refine weights using new data

info@cocodataset org

nmon Objects in Context People Dataset- Tasks- Evaluate-

Keypoint, Panoptic, and

IMAGE

B Microsoft

Object segmentation h

Recognition in context . i e fGCEbOOk
Superpixel stuff segmentation

330K images (>200K labeled) - N “ . .
1.5 million object instances ’ : @ Mlghty Al

80 object categories

44

Presenter Notes
Presentation Notes
If you have a small dataset, it is possible to initialize your model using pre-trained weights/parameters as opposed to random weights/parameters.

For example, large image datasets, including ImageNet and COCO, have been used to train convolutional neural networks. The learned weights/parameters can then be used to initiate a model that is then refined using new samples. This process is known as transfer learning.

The idea here is that images share common features and patterns. So, beginning with patterns learned from other data sets, even if the problem and data are different, is better than starting from random.

Transfer learning can improve model performance and decrease the training time or number of iterations or epochs required to stabilize the result. However, this may not be true in all cases.

http://www.image-net.org/
https://cocodataset.org/#home

Please return to the West Virginia View
Webpage for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Conceptualizing ANNs
	ANN Structure
	Weights
	Bias
	ANNs vs. Deep ANNs
	Strengths
	Weaknesses
	Activation Functions
	Activation Functions
	Binary Step
	Linear
	Sigmoid or Logistic
	Logistic or Sigmoid
	TanH or Hyperbolic Tangent
	Softmax
	Softmax
	Rectified Linear Unit (ReLU)
	Leaky Rectified Linear Unit (Leaky ReLU)
	Parameterized Rectified Linear Unit (Parameterized ReLU)
	Swish
	What activation function to use?
	The process
	Slide Number 24
	Terminology
	Loss Functions
	Confusion Matrix or Error Matrix
	Optimizers
	Gradient
	Optimizers
	Backpropagation
	Optimization Algorithms
	Gradient Descent
	Learning Rate
	Mini-Batch Gradient Descent
	Learning Rate Schedulers
	Mini-Batch Gradient Descent with Momentum
	Adam
	Overfitting
	Overfitting
	Dropouts
	Batch Normalization
	Data Augmentation
	Transfer Learning
	Slide Number 45

